Product Description
Company Profile
Company introduction:
This is from GUANXIAN HAGUAN BEARING CO.,LTD.,located in China.WHB is our brand. We specialize in manufacturing double-row spherical roller bearing,pillow block bearing,thrust ball bearing and so on . We could supply bearing for you with competitive price or best price. Our products are sold well to Russia, Brazil, Mexico, Poland and Tunisia ect. If you are interested in our products, please send the enquiry to us as soon as possible. If you have any questions about the bearing can consult me.
Hope to establish a good business relationship with you. Looking forward to your early reply.
Thanks and best regards.
Certifications
ISO Certificate:
CE Certificate:
Packaging & Shipping
Detailed Photos
Packing:
A. plastic box+outer carton+pallets
B. plastic bag+ single box+carton+pallet
C. plastic bag+ single box+middle box+carton+pallet
D. Of course we will also be based on your needs
FAQ
FAQ:
1. What’s the minimum order quantity of your company?
our minimum order is one.
2. Can you accept OEM and customize it?
Yes, we can customize it for you according to the samples or drawings.
3. Can you provide samples for free?
Yes, we can provide samples free of charge, but we need our customers to bear the freight.
4.Is your company a factory or a trading company?
we have our own factories. We export bearings all over the world.
5. When is the warranty period of your bearings?
within 3 months, the customer needs to provide photos and return the bearing.
6.Can you tell me your company’s payment terms are acceptable?
T / T, D / P, L / C, Western Union remittance,Paypal,Money Gram….
7.Can you tell me the delivery time of your goods?
7-15 days, mainly depending on the quantity of your order.
/* May 10, 2571 16:49:51 */!function(){function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Can a damaged axle hub affect the overall performance and safety of a vehicle?
Yes, a damaged axle hub can significantly affect the overall performance and safety of a vehicle. Here’s a detailed explanation of how a damaged axle hub can impact a vehicle:
1. Wheel Stability:
A damaged axle hub can compromise the stability of the wheel assembly. If the hub is bent, cracked, or worn out, it may not provide a secure mounting point for the wheel. This can result in wheel wobbling or excessive play, leading to unstable handling and compromised vehicle control. A wobbling wheel can also cause vibrations, which can affect the comfort of the passengers and potentially lead to further damage to other components of the suspension system.
2. Wheel Bearing Performance:
The axle hub houses the wheel bearings, which are critical for smooth wheel rotation and weight support. A damaged axle hub can negatively impact the performance of the wheel bearings. For example, if the hub is misaligned or has damaged bearing races, it can cause excessive friction, uneven wear, and premature failure of the wheel bearings. This can lead to wheel noise, reduced fuel efficiency, and compromised safety as the wheel may seize or detach while driving.
3. Brake System Integration:
In many vehicles, the axle hub integrates with the brake rotor or drum. A damaged axle hub can affect the proper installation and function of the braking components. For example, if the hub has damaged mounting surfaces or incorrect dimensions, it may result in brake rotor runout or misalignment. This can cause uneven braking, pulsation in the brake pedal, and reduced braking performance, compromising the vehicle’s ability to stop safely and efficiently.
4. Wheel Alignment and Suspension:
The axle hub plays a role in maintaining proper wheel alignment and supporting the suspension system. A damaged axle hub can lead to misalignment, affecting the camber, toe, or caster angles of the wheel. Improper wheel alignment can result in uneven tire wear, compromised handling, and reduced stability, impacting overall vehicle performance and safety. Additionally, a damaged hub may not provide adequate support for the suspension components, leading to increased stress and potential failure of other suspension parts.
5. Risk of Wheel Separation:
If a damaged axle hub is not addressed promptly, there is a risk of wheel separation. A severely damaged hub can eventually fail, causing the wheel to detach from the vehicle while in motion. Wheel separation is extremely dangerous and can result in a loss of control, vehicle instability, and potential accidents with severe consequences for the occupants and other road users.
6. Overall Safety:
The overall safety of the vehicle can be compromised when the axle hub is damaged. The stability, braking performance, wheel alignment, and suspension function are critical for safe operation. A damaged axle hub can negatively impact these aspects, increasing the risk of accidents and reducing the ability to control the vehicle effectively.
In summary, a damaged axle hub can have a significant impact on the overall performance and safety of a vehicle. It can compromise wheel stability, impair wheel bearing performance, affect brake system integration, disrupt wheel alignment and suspension, and increase the risk of wheel separation. It is crucial to address any signs of axle hub damage promptly to ensure the safe and efficient operation of the vehicle.
How often should axle hubs be inspected and replaced as part of routine vehicle maintenance?
Regular inspection and maintenance of axle hubs are crucial for ensuring the safe and efficient operation of a vehicle. The frequency of inspection and replacement may vary depending on several factors, including the vehicle’s make and model, driving conditions, and manufacturer’s recommendations. Here are some guidelines to consider:
- Manufacturer’s recommendations: The first and most reliable source of information regarding the inspection and replacement intervals for axle hubs is the vehicle manufacturer’s recommendations. These can usually be found in the owner’s manual or the manufacturer’s maintenance schedule. It is essential to follow these guidelines as they are specific to your particular vehicle.
- Driving conditions: If your vehicle is subjected to severe driving conditions, such as frequent towing, off-road use, or driving in extreme temperatures, the axle hubs may experience increased stress and wear. In such cases, more frequent inspections and maintenance may be necessary.
- Visual inspection: It is a good practice to visually inspect the axle hubs during routine maintenance or when performing other maintenance tasks, such as changing the brakes or rotating the tires. Look for any signs of damage, such as leaks, excessive play, or worn-out components. If any abnormalities are detected, further inspection or replacement may be required.
- Wheel bearing maintenance: The axle hubs house the wheel bearings, which are critical for the smooth rotation of the wheels. Some vehicles have serviceable wheel bearings that require periodic maintenance, such as cleaning and repacking with fresh grease. If your vehicle has serviceable wheel bearings, refer to the manufacturer’s recommendations for the appropriate maintenance intervals.
- Unusual noises or vibrations: If you notice any unusual noises, such as grinding, humming, or clicking sounds coming from the wheels, or if you experience vibrations while driving, it could be an indication of a problem with the axle hubs. In such cases, immediate inspection and necessary repairs or replacement should be performed.
It’s important to note that the intervals for inspecting and replacing axle hubs can vary significantly between different vehicles. Therefore, it is recommended to consult the vehicle manufacturer’s recommendations to determine the specific maintenance schedule for your vehicle. Additionally, if you are unsure or suspect any issues with the axle hubs, it is advisable to have a qualified mechanic or automotive technician inspect and assess the condition of the axle hubs.
In summary, the frequency of inspecting and replacing axle hubs as part of routine vehicle maintenance depends on factors such as the manufacturer’s recommendations, driving conditions, visual inspections, wheel bearing maintenance requirements, and the presence of any unusual noises or vibrations. Following the manufacturer’s guidelines and promptly addressing any abnormalities will help ensure the proper functioning and longevity of the axle hubs.
What are the torque specifications for securing an axle hub to the vehicle?
The torque specifications for securing an axle hub to the vehicle may vary depending on the specific make, model, and year of the vehicle. It is crucial to consult the manufacturer’s service manual or appropriate technical resources for the accurate torque specifications for your particular vehicle. Here’s a detailed explanation:
- Manufacturer’s Service Manual: The manufacturer’s service manual is the most reliable and authoritative source for torque specifications. It provides detailed information specific to your vehicle, including the recommended torque values for various components, such as the axle hub. The service manual may specify different torque values for different vehicle models or configurations. You can usually obtain the manufacturer’s service manual from the vehicle manufacturer’s official website or through authorized dealerships.
- Technical Resources: In addition to the manufacturer’s service manual, there are other technical resources available that provide torque specifications. These resources may include specialized automotive repair guides, online databases, or torque specification charts. Reputable automotive websites, professional repair manuals, or automotive forums dedicated to your vehicle’s make or model can be valuable sources for finding accurate torque specifications.
- Online Databases: Some websites offer online databases or torque specification tools that allow you to search for specific torque values based on your vehicle’s make, model, and year. These databases compile torque specifications from various sources and provide a convenient way to access the required information. However, it’s important to verify the accuracy and reliability of the source before relying on the provided torque values.
- Manufacturer Recommendations: In certain cases, the manufacturer may provide torque specifications on the packaging or documentation that accompanies the replacement axle hub. If you are using an OEM (Original Equipment Manufacturer) or aftermarket axle hub, it is advisable to check any provided documentation for torque recommendations specific to that particular product.
Regardless of the source you use to obtain torque specifications, it is essential to follow the recommended values precisely. Torque specifications are specified to ensure proper tightening and secure attachment of the axle hub to the vehicle. Over-tightening or under-tightening can lead to issues such as damage to components, improper seating, or premature wear. It is recommended to use a reliable torque wrench to achieve the specified torque values accurately.
In summary, the torque specifications for securing an axle hub to the vehicle depend on the specific make, model, and year of the vehicle. The manufacturer’s service manual, technical resources, online databases, and manufacturer recommendations are valuable sources to obtain accurate torque specifications. It is crucial to follow the recommended torque values precisely to ensure proper installation and avoid potential issues.
<img src="https://img.hzpt.com/img/axles_shaft_coupling_Spline/spline_shaft_l1.webp" alt="China Custom CZPT Brand Hot Sales Automotive Bearing Front Axle Wheel Hub for CZPT Explorer 515050 Wheel Assembly Car Spare Part axle equalizer”><img src="https://img.hzpt.com/img/axles_shaft_coupling_Spline/spline_shaft_l2.webp" alt="China Custom CZPT Brand Hot Sales Automotive Bearing Front Axle Wheel Hub for CZPT Explorer 515050 Wheel Assembly Car Spare Part axle equalizer”>
editor by lmc 2024-10-30
China manufacturer Good Quality Car Part Auto Bearing Rear Axle Wheel Hub OEM 52750-C8000 713626880 R184.85 922433 for CZPT I20 with Good quality
Product Description
Quick view:
Name | Wheel hub Bearing 52750-C8000 |
Bearings Material | Steel GCr15, 65Mn, or 55 |
Application car makes | Hyundai |
Size | OD:132 mm |
Weight | 2.6 kg |
With ABS | with integrated wheel speed sensor |
Bolt | 4 Bolts |
Position | Rear Axle |
Brand | SI, PPB, or customized |
Packing | Neutral, our brand packing or customized |
OEM replacement | Yes |
Manufacture place | ZHangZhoug, China |
MOQ | 100 PCS |
Warranty | 1 year or 40,000-50,000 KMS |
Certificate | ISO9001:2015 |
Payment | T/T, PayPal, Alibaba |
OEM:
HYUNDAI: 52750-C8000
HYUNDAI: 52750C8000
Ref.:
F AG:
SNR: R184.85
SNR: R18485
ASHIKA: 44-20331
MOOG: HY-WB-12922
OPTIMAL: 922433
Application:
HYUNDAI i20 (GB, IB) 2014-
Other types(contact for more):
BCA | S KF | TIMKEN | Car Model |
513215 | BR93571 | HA590071 | Chevy Malibu |
515000 | BR930116 | 515000 | Ford Aerostar |
515001 | BR930094 | 515001 | Chevy/GMC All K Series |
515002 | BR930035 | 515002 | Chevy/GMC K Series |
515003 | BR935712 | SP455710 | Ford Explorer Sport |
515004 | BR935718 | SP555711 | Ford Expedition |
515006 | BR935716 | 515006 | Dodge R1500/W150 |
515007 | BR935717 | HA599361 | Dodge Dakota |
515008 | BR935714 | SP455711 | Dodge Dakota |
515009 | BR935715 | SP455710 | Dodge Dakota |
515571 | BR93 0571 | SP555710 | Ford F150 |
515011 | BR930400 | HA597851 | Dodge D250 |
515012 | BR930405 | HA59571 | Dodge D250 |
515013 | BR930343 | SP455711 | Ford Ranger |
515015 | BR930406 | SP580302/580303 | Chevy/GMC 20/2500 |
515016 | SP580300 | Chevy/GMC 20/2500 | |
515017 | BR935718 | 515017 | Ford F150 |
515018 | HA591339 | Chevy/GMC | |
515571 | BR930420 | 515571 | Ford F350 |
515571 | BR930424 | 515571 | Ford F250 |
515571 | BR93571 | 515571 | Ford F150 |
515571 | BR93571 | SP555710 | Dodge R1500 |
515571 | BR93571 | 515571 | Ford F350/F450 Super Duty |
515026 | BR930341 | 515026 | Ford Ranger |
515571 | BR930342 | 515571 | Ford Ranger |
515571 | BR930423 | 515571 | Ford F150 |
515030 | BR93571 | 515030 | Ford F150 |
515031 | BR935716 | 515031 | Ford Expedition |
515032 | BR930361 | HA599528 | Dodge Dakota |
515033 | BR930360 | HA599406 | Dodge Dakota |
515037 | Chevy/GMC K3500 | ||
515038 | BR930305 | HA599863 | Dodge Ram |
515039 | BR930409 | SP555712 | Dodge Ram |
515041 | BR930406 | SP580302/580303 | Chevy/GMC K1500 |
515042 | BR93571 | SP555716 | Ford Expedition |
515048 | Chevy/GMC K1500 | ||
515049 | BR93571 | SP555711 | Dodge R1500 |
515050 | BR93 0571 | SP475711 | Ford Explorer |
515051 | BR930345 | SP455713 | Ford Ranger |
515052 | BR93571 | SP455712 | Ford Explorer Sport |
515054 | SP550306 | Chevy Silverado | |
515055 | Chevy/GMC K1500 | ||
515058 | BR93571 | SP58571 | Chevy Silverado |
515061 | BR930502 | HA590032 | Dodge D250 |
515063 | BR935713 | HA595713 | Dodge D250 |
515072 | BR935714 | HA55710 | Dodge R1500 |
515073 | BR935715 | Dodge R1500 | |
515084 | BR930611 | HA590001 | Dodge Ram 1500 |
518500 | BR930000 | 518500 | Chrysler LeBaron |
518501 | BR930001 | 518001 | Chrysler E Class |
518502 | BR930002 | 518502 | Chrysler E Class |
518503 | BR930153K | 518503 | Ford Escort |
518506 | BR935710K | 518506 | Toyota Camry |
518507 | BR930300K | 518507 | Chevy Prizm |
518510 | BR930263K | HA590263K | Ford Focus |
520000 | BR930151K | 520000 | Ford Taurus |
525710 | BR930152K | 525710 | Ford Taurus |
521000 | BR935719K | 521000 | Ford Explorer |
513011K | BR930091K | 513011K | B uick Century |
513016K | BR930571K | 513016K | B uick Century |
Company Profile
ZheJiang Mighty Machinery Co. Ltd is a professional manufacturer of auto bearings for more than 20 years. We provide a one-stop service for our customers. Our main products include wheel bearings & hub assembly, belt tensioners, clutch release bearings, and auto parts.
Relying on the professional and rich manufacturing experience and many substantial factories which stable cooperated for many years, Mighty suppliers customers high-quality products at very competitive prices.
Customer satisfaction is our First Priority, We adhere to the concept of ” Quality First, Customer First”. We will continue to provide high-quality products and the best services to our customers and build up CZPT long-time friendship partners.
Main Products:
Deep groove ball bearing
tapered roller bearing
spherical roller bearing
self-aligning bearing
rod end bearing
pillow blocks
linear motion bearing and CZPT rail
wheel bearing & hub unit
clutch release bearing & hydraulic clutch
belt tensioner & pulley
universal joint
Our Bearing Advantage:
1. Free Sample bearing
2.ISO certified
3. Bearing Small order accepted
4. In Stock bearing
5. OEM bearing service
6. Professional: Over 20 years manufacture bearing
7. Customized bearing, Customer’s bearing drawing or samples accepted
8. Competitive price
9. TT Payment, Paypal, Alibaba payment, Trade Assurance Order
Packages:
FAQ:
1. When are you going to deliver?
A: Sample: 5-15 business days after payment is confirmed.
Bulk order:15-60 workdays after deposit received…
2. What’s your delivery way?
A: By sea, by air, by train, express as your need.
3. What are your terms of delivery?
A: EXW, FOB, CFR, CIF, DAP, etc.
4. Can you support the sample order?
A: Yes, we can supply the sample if we have parts in stock, but the customer has to pay the sample payment(according to the value of the samples) and the shipping cost.
5. What are you going to do if there has a claim for the quality or quantity missing?
A: 1. For quality, during the warranty period, if any claim for it, we shall help the customer to find out what’s the exact problem. Using by mistake, installation problem, or poor quality? Once it’s due to the poor quality, we will arrange the new products to customers.
2. For missing quantities, there have 2 weeks for claiming the missing ones after receiving the goods. We shall help to find out where it is.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Yes |
---|---|
Warranty: | 12 Month |
Type: | Wheel Hub Bearing |
Material: | Chrome Steel |
Tolerance: | P0 |
Certification: | ISO9001, TS16949 |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can you recommend reliable brands for purchasing replacement axle hubs?
When it comes to purchasing replacement axle hubs, there are several reliable brands known for their quality and durability. Here are some recommended brands:
- Timken: Timken is a well-known brand that specializes in manufacturing high-quality bearings and hub assemblies. They have a reputation for producing reliable and long-lasting products. Timken axle hubs are widely used in the automotive industry and are trusted by both professionals and DIY enthusiasts.
- Moog: Moog is another reputable brand that offers a wide range of suspension and steering components, including axle hubs. Moog axle hubs are known for their precision engineering, excellent build quality, and reliable performance. They are designed to meet or exceed OEM (Original Equipment Manufacturer) specifications and are a popular choice among car owners.
- ACDelco: ACDelco is a trusted brand that provides a comprehensive range of automotive replacement parts. Their axle hubs are designed to deliver reliable performance and durability. ACDelco axle hubs are often recommended for their compatibility with various vehicle makes and models, making them a reliable choice for replacement.
- SKF: SKF is a well-established brand with a strong reputation in the automotive industry. They are known for their high-quality bearings and hub assemblies, including axle hubs. SKF axle hubs are engineered to provide excellent performance and longevity. They are often regarded as a premium option for those seeking reliable replacement parts.
- NTN: NTN is a trusted manufacturer of bearings and hub assemblies. They offer a range of axle hubs that are designed to meet stringent quality standards. NTN axle hubs are known for their durability and precise fitment, making them a reliable choice for replacement in various vehicles.
It’s important to note that the availability of specific brands may vary depending on your location and the make and model of your vehicle. Additionally, it’s always a good idea to consult with a trusted mechanic or do thorough research to ensure the compatibility of the axle hubs with your vehicle before making a purchase.
In summary, some reliable brands for purchasing replacement axle hubs include Timken, Moog, ACDelco, SKF, and NTN. These brands have a solid reputation for producing high-quality and durable axle hubs, making them trusted choices for maintaining and repairing your vehicle’s axle system.
Where can I find a comprehensive guide for DIY replacement of an axle hub?
If you are looking for a comprehensive guide to assist you with the DIY (Do-It-Yourself) replacement of an axle hub, there are several reliable sources you can refer to. Here’s a detailed explanation:
- Manufacturer’s Service Manual: The first and most authoritative source of information for any vehicle repair or maintenance task is the manufacturer’s service manual. The service manual provides detailed instructions, diagrams, and specifications specific to your vehicle’s make, model, and year. It covers all aspects of the vehicle, including axle hub replacement procedures. You can usually obtain the manufacturer’s service manual from the vehicle manufacturer’s official website or through authorized dealerships.
- Online Repair Guides: Many reputable automotive websites and forums offer comprehensive online repair guides. These guides often include step-by-step instructions, accompanied by photographs or illustrations, to help you through the process of replacing an axle hub. Some websites compile user-contributed guides, while others are created by automotive professionals. Popular sources for online repair guides include AutoZone, RepairPal, and iFixit.
- Video Tutorials: Video tutorials can be invaluable resources for visual learners. Websites like YouTube host a wide range of DIY automotive repair videos that cover various tasks, including axle hub replacement. Watching a video tutorial can provide a clear demonstration of the required steps, tools, and techniques involved in the process. You can search for specific video tutorials by using keywords such as “DIY axle hub replacement” along with your vehicle’s make and model.
- Automotive Forums: Online automotive forums are communities where enthusiasts and professionals share knowledge and experiences. Forums like Reddit’s r/MechanicAdvice, Automotive Forums, or specific forums dedicated to your vehicle’s make or model can be excellent sources of information. You can search or post questions specific to axle hub replacement, and experienced members may provide detailed guidance, tips, or even links to comprehensive guides they have found useful.
- Library Resources: Public libraries often have a selection of automotive repair manuals and guides available for borrowing. These printed resources can provide comprehensive instructions and illustrations for various repair tasks, including axle hub replacement. Look for repair manuals specific to your vehicle’s make, model, and year in the automotive section of your local library.
When using any guide or resource for DIY repairs, it’s important to exercise caution and ensure your own safety. Follow all recommended safety procedures, use the appropriate tools, and take necessary precautions. If you are unsure or uncomfortable with any aspect of the repair process, it is advisable to seek assistance from a qualified mechanic or professional technician.
In summary, a comprehensive guide for DIY replacement of an axle hub can be found in various sources such as the manufacturer’s service manual, online repair guides, video tutorials, automotive forums, and library resources. These resources provide step-by-step instructions and guidance to help you successfully replace an axle hub. Remember to prioritize safety and seek professional help if needed.
Are there any recalls or common issues associated with specific axle hub models?
Recalls and common issues can occur with specific axle hub models due to manufacturing defects, design flaws, or other factors. Here’s a detailed explanation:
It’s important to note that specific recalls and common issues can vary depending on the make, model, and year of the vehicle, as well as the specific axle hub manufacturer. Manufacturers and regulatory bodies such as the National Highway Traffic Safety Administration (NHTSA) monitor and address safety concerns related to axle hubs through recalls and investigations.
Recalls are typically initiated by the vehicle manufacturer or the axle hub manufacturer in response to identified safety defects or non-compliance with safety standards. Recalls aim to address the issues and rectify any potential safety risks associated with the axle hub models. They may involve inspections, repairs, or replacements of the affected components.
To determine if there are any recalls or common issues associated with specific axle hub models, it is recommended to check the following sources:
- Manufacturer’s Website: Visit the official website of the vehicle manufacturer or the axle hub manufacturer. They often provide information on recalls, technical service bulletins (TSBs), and common issues related to their products. Look for any relevant information specific to the axle hub models in question.
- NHTSA Website: The NHTSA maintains a comprehensive database of recalls and investigations related to vehicle components, including axle hubs. Their website allows users to search for recalls and investigations by specific make, model, and component. You can use their search tool to check if there are any recalls or investigations associated with the axle hub models of interest.
- Owner Forums and Online Communities: Online forums and communities dedicated to specific vehicle makes and models can be a valuable source of information. Owners often share their experiences, including common issues they have encountered with axle hub models. It’s important to consider multiple sources and exercise caution when relying on anecdotal information.
- Service Centers and Mechanics: Local service centers and mechanics who specialize in the specific vehicle make or have experience with the axle hub models in question may be aware of any recalls or common issues. They can provide insights based on their firsthand knowledge and experience.
By consulting these sources, you can gather information about any recalls or common issues associated with specific axle hub models. If any recalls or safety concerns are identified, it is recommended to contact the vehicle manufacturer or a certified dealership to inquire about the necessary actions, such as inspections or repairs, to address the issues.
In summary, recalls and common issues can occur with specific axle hub models. Checking the manufacturer’s website, the NHTSA website, owner forums, and consulting with service centers and mechanics can provide valuable information regarding any recalls or common issues associated with the axle hub models of interest. It’s important to stay informed and take appropriate actions to address any identified safety concerns.
editor by CX 2024-03-30
China Standard Rear Axle Wheel Hub 3748.95 Su001A1006 1401393280 56bwkh06j Vkba6577 for Citroen FIAT P-Eugeot 2007 Car Makes Wheel Bearing axle dump
Product Description
Quick view:
Name | Rear Axle Wheel Hub 3748.95 | |||||
Bearings Material | Steel GCr15, 65Mn, or 55 | |||||
Application car makes | CITROEN FIAT P-EUGEOT | |||||
Size | OD: 128 mm | |||||
Weight | 5.9 kg | |||||
With ABS | with integrated ABS sensor | |||||
Hole | 5 | |||||
Brand | SI, PPB, or customized | |||||
Packing | Neutral, our brand packing or customized | |||||
OEM replacement | Yes | |||||
Manufacture place | ZHangZhoug, China | |||||
MOQ | 1.2 | VKBA523 | 482A/472 | VKBA 5038 | 35BWD16 | VKM14103 |
FAQ:
1.When are you going to deliver?
A: Sample: 5-15 business days after payment is confirmed.
Bulk order:15-60 workdays after deposit received…
2. What’s your delivery way?
A: By sea, by air, by train, express as your need.
3. What are your terms of delivery?
A: EXW, FOB, CFR, CIF, DAP, etc.
4. Can you support the sample order?
A: Yes, we can supply the sample if we have parts in stock, but the customer has to pay the sample payment(according to the value of the samples) and the shipping cost.
5. What are you going to do if there has a claim for the quality or quantity missing?
A: 1. For quality, during the warranty period, if any claim for it, we shall help customer to find out what’s the exactly problem. Using by mistake, installation problem, or poor quality? Once it’s due to the poor quality, we will arrange the new products to customers.
2. For missing quantities, there have 2 weeks for claiming the missing ones after receiving the goods. We shall help to find out where it is.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Yes |
---|---|
Warranty: | 12 Month |
Type: | Wheel Hub Bearing |
Material: | Chrome Steel |
Tolerance: | P0 |
Certification: | ISO9001, TS16949 |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can a damaged axle hub affect the overall performance and safety of a vehicle?
Yes, a damaged axle hub can significantly affect the overall performance and safety of a vehicle. Here’s a detailed explanation of how a damaged axle hub can impact a vehicle:
1. Wheel Stability:
A damaged axle hub can compromise the stability of the wheel assembly. If the hub is bent, cracked, or worn out, it may not provide a secure mounting point for the wheel. This can result in wheel wobbling or excessive play, leading to unstable handling and compromised vehicle control. A wobbling wheel can also cause vibrations, which can affect the comfort of the passengers and potentially lead to further damage to other components of the suspension system.
2. Wheel Bearing Performance:
The axle hub houses the wheel bearings, which are critical for smooth wheel rotation and weight support. A damaged axle hub can negatively impact the performance of the wheel bearings. For example, if the hub is misaligned or has damaged bearing races, it can cause excessive friction, uneven wear, and premature failure of the wheel bearings. This can lead to wheel noise, reduced fuel efficiency, and compromised safety as the wheel may seize or detach while driving.
3. Brake System Integration:
In many vehicles, the axle hub integrates with the brake rotor or drum. A damaged axle hub can affect the proper installation and function of the braking components. For example, if the hub has damaged mounting surfaces or incorrect dimensions, it may result in brake rotor runout or misalignment. This can cause uneven braking, pulsation in the brake pedal, and reduced braking performance, compromising the vehicle’s ability to stop safely and efficiently.
4. Wheel Alignment and Suspension:
The axle hub plays a role in maintaining proper wheel alignment and supporting the suspension system. A damaged axle hub can lead to misalignment, affecting the camber, toe, or caster angles of the wheel. Improper wheel alignment can result in uneven tire wear, compromised handling, and reduced stability, impacting overall vehicle performance and safety. Additionally, a damaged hub may not provide adequate support for the suspension components, leading to increased stress and potential failure of other suspension parts.
5. Risk of Wheel Separation:
If a damaged axle hub is not addressed promptly, there is a risk of wheel separation. A severely damaged hub can eventually fail, causing the wheel to detach from the vehicle while in motion. Wheel separation is extremely dangerous and can result in a loss of control, vehicle instability, and potential accidents with severe consequences for the occupants and other road users.
6. Overall Safety:
The overall safety of the vehicle can be compromised when the axle hub is damaged. The stability, braking performance, wheel alignment, and suspension function are critical for safe operation. A damaged axle hub can negatively impact these aspects, increasing the risk of accidents and reducing the ability to control the vehicle effectively.
In summary, a damaged axle hub can have a significant impact on the overall performance and safety of a vehicle. It can compromise wheel stability, impair wheel bearing performance, affect brake system integration, disrupt wheel alignment and suspension, and increase the risk of wheel separation. It is crucial to address any signs of axle hub damage promptly to ensure the safe and efficient operation of the vehicle.
How often should axle hubs be inspected and replaced as part of routine vehicle maintenance?
Regular inspection and maintenance of axle hubs are crucial for ensuring the safe and efficient operation of a vehicle. The frequency of inspection and replacement may vary depending on several factors, including the vehicle’s make and model, driving conditions, and manufacturer’s recommendations. Here are some guidelines to consider:
- Manufacturer’s recommendations: The first and most reliable source of information regarding the inspection and replacement intervals for axle hubs is the vehicle manufacturer’s recommendations. These can usually be found in the owner’s manual or the manufacturer’s maintenance schedule. It is essential to follow these guidelines as they are specific to your particular vehicle.
- Driving conditions: If your vehicle is subjected to severe driving conditions, such as frequent towing, off-road use, or driving in extreme temperatures, the axle hubs may experience increased stress and wear. In such cases, more frequent inspections and maintenance may be necessary.
- Visual inspection: It is a good practice to visually inspect the axle hubs during routine maintenance or when performing other maintenance tasks, such as changing the brakes or rotating the tires. Look for any signs of damage, such as leaks, excessive play, or worn-out components. If any abnormalities are detected, further inspection or replacement may be required.
- Wheel bearing maintenance: The axle hubs house the wheel bearings, which are critical for the smooth rotation of the wheels. Some vehicles have serviceable wheel bearings that require periodic maintenance, such as cleaning and repacking with fresh grease. If your vehicle has serviceable wheel bearings, refer to the manufacturer’s recommendations for the appropriate maintenance intervals.
- Unusual noises or vibrations: If you notice any unusual noises, such as grinding, humming, or clicking sounds coming from the wheels, or if you experience vibrations while driving, it could be an indication of a problem with the axle hubs. In such cases, immediate inspection and necessary repairs or replacement should be performed.
It’s important to note that the intervals for inspecting and replacing axle hubs can vary significantly between different vehicles. Therefore, it is recommended to consult the vehicle manufacturer’s recommendations to determine the specific maintenance schedule for your vehicle. Additionally, if you are unsure or suspect any issues with the axle hubs, it is advisable to have a qualified mechanic or automotive technician inspect and assess the condition of the axle hubs.
In summary, the frequency of inspecting and replacing axle hubs as part of routine vehicle maintenance depends on factors such as the manufacturer’s recommendations, driving conditions, visual inspections, wheel bearing maintenance requirements, and the presence of any unusual noises or vibrations. Following the manufacturer’s guidelines and promptly addressing any abnormalities will help ensure the proper functioning and longevity of the axle hubs.
Are there any recalls or common issues associated with specific axle hub models?
Recalls and common issues can occur with specific axle hub models due to manufacturing defects, design flaws, or other factors. Here’s a detailed explanation:
It’s important to note that specific recalls and common issues can vary depending on the make, model, and year of the vehicle, as well as the specific axle hub manufacturer. Manufacturers and regulatory bodies such as the National Highway Traffic Safety Administration (NHTSA) monitor and address safety concerns related to axle hubs through recalls and investigations.
Recalls are typically initiated by the vehicle manufacturer or the axle hub manufacturer in response to identified safety defects or non-compliance with safety standards. Recalls aim to address the issues and rectify any potential safety risks associated with the axle hub models. They may involve inspections, repairs, or replacements of the affected components.
To determine if there are any recalls or common issues associated with specific axle hub models, it is recommended to check the following sources:
- Manufacturer’s Website: Visit the official website of the vehicle manufacturer or the axle hub manufacturer. They often provide information on recalls, technical service bulletins (TSBs), and common issues related to their products. Look for any relevant information specific to the axle hub models in question.
- NHTSA Website: The NHTSA maintains a comprehensive database of recalls and investigations related to vehicle components, including axle hubs. Their website allows users to search for recalls and investigations by specific make, model, and component. You can use their search tool to check if there are any recalls or investigations associated with the axle hub models of interest.
- Owner Forums and Online Communities: Online forums and communities dedicated to specific vehicle makes and models can be a valuable source of information. Owners often share their experiences, including common issues they have encountered with axle hub models. It’s important to consider multiple sources and exercise caution when relying on anecdotal information.
- Service Centers and Mechanics: Local service centers and mechanics who specialize in the specific vehicle make or have experience with the axle hub models in question may be aware of any recalls or common issues. They can provide insights based on their firsthand knowledge and experience.
By consulting these sources, you can gather information about any recalls or common issues associated with specific axle hub models. If any recalls or safety concerns are identified, it is recommended to contact the vehicle manufacturer or a certified dealership to inquire about the necessary actions, such as inspections or repairs, to address the issues.
In summary, recalls and common issues can occur with specific axle hub models. Checking the manufacturer’s website, the NHTSA website, owner forums, and consulting with service centers and mechanics can provide valuable information regarding any recalls or common issues associated with the axle hub models of interest. It’s important to stay informed and take appropriate actions to address any identified safety concerns.
editor by CX 2024-03-27
China Custom Car Accessories Rear Axle Wheel Hub Bearing Assembly Ga2a-26-15X Vkba3229 for Mazda 626 axle extender
Product Description
Basic information:
Description | Car Accessories Rear Axle Wheel Hub Bearing Assembly GA2A-26-15X VKBA3229 For MAZDA 626 |
Material | Chrome steel Gcr15 |
Application | For MAZDA |
Position | Rear axle |
With ABS | No |
Bolts | 5 bolts |
Weight | 2.2 kg |
Brand | SI, PPB, or customized |
Packing | Neutral, SI, PPB brand packing or customized |
OEM/ODM service | Yes |
Manufacture place | ZHangZhoug, China |
MOQ | 50 PCS |
OEM replacement | Yes |
Inspection | 100% |
Warranty | 1 year or 40,000-50,000 KMS |
Certificate | ISO9001:2015 TS16949 |
Payment | T/T, PayPal, Alibaba |
Detailed pictures:
O.E.:
GA2A-26-15X
GA5R-26-15X
GD7A-26-15X
GE4T-26-15X
GE4T-26-15XA
Ref.:
For F-AG: 713615540
For S-KF: VKBA3229
For SNR: R170.34
For TIMKEN: K81909
For OPTIMAL: 942381
Application:
For MAZDA 626 IV (GE) 1992-1997
For MAZDA 626 IV Hatchback (GE) 1991-1997
For MAZDA 626 V (GF) 1997-2002
For MAZDA 626 V Hatchback (GF) 1997-2002
For MAZDA MX-6 1992-1997
For MAZDA XEDOS 6 (CA) 1992-1999
Packing and Delivery:
Work shop:
Exhibitions:
FAQ:
Q1.What is your shipping logistic?
Re: DHL, TNT, FedEx express, by air/sea/train.
Q2:What’s the MOQ?
Re: For the wheel hub assembly. The MOQ is always 50 sets. If ordering together with other models, small quantities can be organized. But need more time due to the production schedule.
Q3. What are your goods of packing?
Re: Generally, our goods will be packed in Neutral white or brown boxes for the hub bearing unit. Our brand packing SI & CZPT are offered. If you have any other packing requests, we shall also handle them.
Q4. What is your sample policy?
Re: We can supply the sample if we have ready parts in stock.
Q5. Do you have any certificates?
Re: Yes, we have the certificate of ISO9001:2015.
Q6:Any warranty of your products.
Re: Sure, We are offering a guarantee for 12 months or 40,000-50,000 km for the aftermarket.
Q7: How can I make an inquiry?
Re: You can contact us by email, telephone, WhatsApp, , etc.
Q8: How long can reply inquiry?
Re: Within 24 hours.
Q9: What’s the delivery time?
Re: Ready stock 10-15 days, production for 30 to 45 days.
Q10: How do you maintain our good business relationship?
Re: 1. Keep stable, reliable quality, competitive price to ensure our customer’s benefit;
2. Optimal lead time.
3. Keep customers updated about the new goods.
4. Make customers satisfaction as our main goal.
Q11: Can we visit the company & factory?
Re: Yes, welcome for your visit & business discussion.
After-sales Service: | Yes |
---|---|
Warranty: | Yes |
Type: | Wheel Hub Bearing |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Can you recommend reliable brands for purchasing replacement axle hubs?
When it comes to purchasing replacement axle hubs, there are several reliable brands known for their quality and durability. Here are some recommended brands:
- Timken: Timken is a well-known brand that specializes in manufacturing high-quality bearings and hub assemblies. They have a reputation for producing reliable and long-lasting products. Timken axle hubs are widely used in the automotive industry and are trusted by both professionals and DIY enthusiasts.
- Moog: Moog is another reputable brand that offers a wide range of suspension and steering components, including axle hubs. Moog axle hubs are known for their precision engineering, excellent build quality, and reliable performance. They are designed to meet or exceed OEM (Original Equipment Manufacturer) specifications and are a popular choice among car owners.
- ACDelco: ACDelco is a trusted brand that provides a comprehensive range of automotive replacement parts. Their axle hubs are designed to deliver reliable performance and durability. ACDelco axle hubs are often recommended for their compatibility with various vehicle makes and models, making them a reliable choice for replacement.
- SKF: SKF is a well-established brand with a strong reputation in the automotive industry. They are known for their high-quality bearings and hub assemblies, including axle hubs. SKF axle hubs are engineered to provide excellent performance and longevity. They are often regarded as a premium option for those seeking reliable replacement parts.
- NTN: NTN is a trusted manufacturer of bearings and hub assemblies. They offer a range of axle hubs that are designed to meet stringent quality standards. NTN axle hubs are known for their durability and precise fitment, making them a reliable choice for replacement in various vehicles.
It’s important to note that the availability of specific brands may vary depending on your location and the make and model of your vehicle. Additionally, it’s always a good idea to consult with a trusted mechanic or do thorough research to ensure the compatibility of the axle hubs with your vehicle before making a purchase.
In summary, some reliable brands for purchasing replacement axle hubs include Timken, Moog, ACDelco, SKF, and NTN. These brands have a solid reputation for producing high-quality and durable axle hubs, making them trusted choices for maintaining and repairing your vehicle’s axle system.
Are there specific tools required for DIY axle hub replacement, and where can I find them?
When undertaking a DIY axle hub replacement, certain tools are needed to ensure a smooth and successful process. Here are some specific tools that are commonly required for DIY axle hub replacement and where you can find them:
- Jack and jack stands: These tools are essential for raising the vehicle off the ground and providing a stable support system. You can find jacks and jack stands at automotive supply stores, hardware stores, and online retailers.
- Lug wrench or socket set: A lug wrench or a socket set with the appropriate size socket is necessary to loosen and tighten the lug nuts on the wheel. These tools are commonly available at automotive supply stores, hardware stores, and online retailers.
- Torque wrench: A torque wrench is required to tighten the lug nuts on the wheel and other fasteners to the manufacturer’s recommended torque specifications. Torque wrenches can be found at automotive supply stores, tool stores, and online retailers.
- Pry bar: A pry bar is useful for gently separating the axle hub assembly from the mounting point, especially if it is tightly secured. Pry bars are available at automotive supply stores, hardware stores, and online retailers.
- Hammer: A hammer can be used to tap or lightly strike the axle hub assembly or its components for removal or installation. Hammers are commonly available at hardware stores, tool stores, and online retailers.
- Wheel bearing grease: High-quality wheel bearing grease is necessary for lubricating the axle hub assembly and ensuring smooth operation. Wheel bearing grease can be purchased at automotive supply stores, lubricant suppliers, and online retailers.
- Additional tools: Depending on the specific vehicle and axle hub assembly, you may require additional tools such as a socket set, wrenches, pliers, or specific specialty tools. Consult the vehicle’s service manual or online resources for the specific tools needed for your vehicle model.
To find these tools, you can visit local automotive supply stores, hardware stores, or tool stores in your area. They typically carry a wide range of automotive tools and equipment. Alternatively, you can explore online retailers that specialize in automotive tools and equipment, where you can conveniently browse and purchase the tools you need.
It’s important to ensure that the tools you acquire are of good quality and suitable for the task at hand. Investing in quality tools can make the DIY axle hub replacement process more efficient and help achieve better results. Additionally, always follow the manufacturer’s instructions and safety guidelines when using tools and equipment.
In summary, specific tools are required for DIY axle hub replacement, such as a jack and jack stands, lug wrench or socket set, torque wrench, pry bar, hammer, and wheel bearing grease. These tools can be found at automotive supply stores, hardware stores, tool stores, and online retailers. Acquiring quality tools and following proper safety guidelines will contribute to a successful DIY axle hub replacement.
How do changes in wheel offset affect the angles and performance of axle hubs?
Changes in wheel offset can have a significant impact on the angles and performance of axle hubs. Here’s a detailed explanation:
Wheel offset refers to the distance between the centerline of the wheel and the mounting surface. It determines how far the wheel and tire assembly will be positioned in relation to the axle hub. There are three types of wheel offsets: positive offset, zero offset, and negative offset.
Here’s how changes in wheel offset can affect the angles and performance of axle hubs:
- Camber Angle: Camber angle refers to the inward or outward tilt of the wheel when viewed from the front of the vehicle. Changes in wheel offset can impact the camber angle. Increasing positive offset or reducing negative offset typically results in more positive camber, while increasing negative offset or reducing positive offset leads to more negative camber. Improper camber angle can cause uneven tire wear, reduced traction, and handling issues.
- Track Width: Wheel offset affects the track width, which is the distance between the centerlines of the left and right wheels. Wider track width can improve stability and cornering performance. Increasing positive offset or reducing negative offset generally widens the track width, while increasing negative offset or reducing positive offset narrows it.
- Steering Geometry: Changes in wheel offset also impact the steering geometry of the vehicle. Altering the offset can affect the scrub radius, which is the distance between the tire contact patch and the steering axis. Changes in scrub radius can influence steering effort, feedback, and stability. It’s important to maintain the appropriate scrub radius for optimal handling and performance.
- Wheel Bearing Load: Wheel offset affects the load applied to the wheel bearings. Increasing positive offset or reducing negative offset generally increases the load on the inner wheel bearing, while increasing negative offset or reducing positive offset increases the load on the outer wheel bearing. Proper wheel bearing load is crucial for their longevity and performance.
- Clearance and Interference: Changes in wheel offset can also impact the clearance between the wheel and suspension components or bodywork. Insufficient clearance due to excessive positive offset or inadequate clearance due to excessive negative offset can lead to rubbing, interference, or potential damage to the axle hub, suspension parts, or bodywork.
It’s important to note that any changes in wheel offset should be done within the manufacturer’s recommended specifications or in consultation with knowledgeable professionals. Deviating from the recommended wheel offset can lead to adverse effects on the axle hub angles and performance, as well as other aspects of the vehicle’s handling and safety.
When modifying wheel offset, it is crucial to consider the overall impact on the vehicle’s suspension geometry, clearance, and alignment. It may be necessary to make corresponding adjustments to maintain proper alignment angles, such as camber, toe, and caster, to ensure optimal tire wear, handling, and performance.
In summary, changes in wheel offset can have a significant impact on the angles and performance of axle hubs. They can affect camber angles, track width, steering geometry, wheel bearing load, and clearance. It is important to adhere to manufacturer’s specifications and consult with knowledgeable professionals when considering changes in wheel offset to ensure proper alignment, optimal performance, and safe operation of the vehicle.
editor by CX 2023-11-16
China factory Good Quality Car Part Auto Bearing Rear Axle Wheel Hub OEM 52750-C8000 713626880 R184.85 922433 for CZPT I20 axle alignment
Product Description
Quick view:
Name | Wheel hub Bearing 52750-C8000 |
Bearings Material | Steel GCr15, 65Mn, or 55 |
Application car makes | Hyundai |
Size | OD:132 mm |
Weight | 2.6 kg |
With ABS | with integrated wheel speed sensor |
Bolt | 4 Bolts |
Position | Rear Axle |
Brand | SI, PPB, or customized |
Packing | Neutral, our brand packing or customized |
OEM replacement | Yes |
Manufacture place | ZHangZhoug, China |
MOQ | 100 PCS |
Warranty | 1 year or 40,000-50,000 KMS |
Certificate | ISO9001:2015 |
Payment | T/T, PayPal, Alibaba |
OEM:
HYUNDAI: 52750-C8000
HYUNDAI: 52750C8000
Ref.:
F AG:
SNR: R184.85
SNR: R18485
ASHIKA: 44-20331
MOOG: HY-WB-12922
OPTIMAL: 922433
Application:
HYUNDAI i20 (GB, IB) 2014-
Other types(contact for more):
BCA | S KF | TIMKEN | Car Model |
513215 | BR93571 | HA590071 | Chevy Malibu |
515000 | BR930116 | 515000 | Ford Aerostar |
515001 | BR930094 | 515001 | Chevy/GMC All K Series |
515002 | BR930035 | 515002 | Chevy/GMC K Series |
515003 | BR935712 | SP455710 | Ford Explorer Sport |
515004 | BR935718 | SP555711 | Ford Expedition |
515006 | BR935716 | 515006 | Dodge R1500/W150 |
515007 | BR935717 | HA599361 | Dodge Dakota |
515008 | BR935714 | SP455711 | Dodge Dakota |
515009 | BR935715 | SP455710 | Dodge Dakota |
515571 | BR93 0571 | SP555710 | Ford F150 |
515011 | BR930400 | HA597851 | Dodge D250 |
515012 | BR930405 | HA59571 | Dodge D250 |
515013 | BR930343 | SP455711 | Ford Ranger |
515015 | BR930406 | SP580302/580303 | Chevy/GMC 20/2500 |
515016 | SP580300 | Chevy/GMC 20/2500 | |
515017 | BR935718 | 515017 | Ford F150 |
515018 | HA591339 | Chevy/GMC | |
515571 | BR930420 | 515571 | Ford F350 |
515571 | BR930424 | 515571 | Ford F250 |
515571 | BR93571 | 515571 | Ford F150 |
515571 | BR93571 | SP555710 | Dodge R1500 |
515571 | BR93571 | 515571 | Ford F350/F450 Super Duty |
515026 | BR930341 | 515026 | Ford Ranger |
515571 | BR930342 | 515571 | Ford Ranger |
515571 | BR930423 | 515571 | Ford F150 |
515030 | BR93571 | 515030 | Ford F150 |
515031 | BR935716 | 515031 | Ford Expedition |
515032 | BR930361 | HA599528 | Dodge Dakota |
515033 | BR930360 | HA599406 | Dodge Dakota |
515037 | Chevy/GMC K3500 | ||
515038 | BR930305 | HA599863 | Dodge Ram |
515039 | BR930409 | SP555712 | Dodge Ram |
515041 | BR930406 | SP580302/580303 | Chevy/GMC K1500 |
515042 | BR93571 | SP555716 | Ford Expedition |
515048 | Chevy/GMC K1500 | ||
515049 | BR93571 | SP555711 | Dodge R1500 |
515050 | BR93 0571 | SP475711 | Ford Explorer |
515051 | BR930345 | SP455713 | Ford Ranger |
515052 | BR93571 | SP455712 | Ford Explorer Sport |
515054 | SP550306 | Chevy Silverado | |
515055 | Chevy/GMC K1500 | ||
515058 | BR93571 | SP58571 | Chevy Silverado |
515061 | BR930502 | HA590032 | Dodge D250 |
515063 | BR935713 | HA595713 | Dodge D250 |
515072 | BR935714 | HA55710 | Dodge R1500 |
515073 | BR935715 | Dodge R1500 | |
515084 | BR930611 | HA590001 | Dodge Ram 1500 |
518500 | BR930000 | 518500 | Chrysler LeBaron |
518501 | BR930001 | 518001 | Chrysler E Class |
518502 | BR930002 | 518502 | Chrysler E Class |
518503 | BR930153K | 518503 | Ford Escort |
518506 | BR935710K | 518506 | Toyota Camry |
518507 | BR930300K | 518507 | Chevy Prizm |
518510 | BR930263K | HA590263K | Ford Focus |
520000 | BR930151K | 520000 | Ford Taurus |
525710 | BR930152K | 525710 | Ford Taurus |
521000 | BR935719K | 521000 | Ford Explorer |
513011K | BR930091K | 513011K | B uick Century |
513016K | BR930571K | 513016K | B uick Century |
Company Profile
ZheJiang Mighty Machinery Co. Ltd is a professional manufacturer of auto bearings for more than 20 years. We provide a one-stop service for our customers. Our main products include wheel bearings & hub assembly, belt tensioners, clutch release bearings, and auto parts.
Relying on the professional and rich manufacturing experience and many substantial factories which stable cooperated for many years, Mighty suppliers customers high-quality products at very competitive prices.
Customer satisfaction is our First Priority, We adhere to the concept of ” Quality First, Customer First”. We will continue to provide high-quality products and the best services to our customers and build up CZPT long-time friendship partners.
Main Products:
Deep groove ball bearing
tapered roller bearing
spherical roller bearing
self-aligning bearing
rod end bearing
pillow blocks
linear motion bearing and CZPT rail
wheel bearing & hub unit
clutch release bearing & hydraulic clutch
belt tensioner & pulley
universal joint
Our Bearing Advantage:
1. Free Sample bearing
2.ISO certified
3. Bearing Small order accepted
4. In Stock bearing
5. OEM bearing service
6. Professional: Over 20 years manufacture bearing
7. Customized bearing, Customer’s bearing drawing or samples accepted
8. Competitive price
9. TT Payment, Paypal, Alibaba payment, Trade Assurance Order
Packages:
FAQ:
1. When are you going to deliver?
A: Sample: 5-15 business days after payment is confirmed.
Bulk order:15-60 workdays after deposit received…
2. What’s your delivery way?
A: By sea, by air, by train, express as your need.
3. What are your terms of delivery?
A: EXW, FOB, CFR, CIF, DAP, etc.
4. Can you support the sample order?
A: Yes, we can supply the sample if we have parts in stock, but the customer has to pay the sample payment(according to the value of the samples) and the shipping cost.
5. What are you going to do if there has a claim for the quality or quantity missing?
A: 1. For quality, during the warranty period, if any claim for it, we shall help the customer to find out what’s the exact problem. Using by mistake, installation problem, or poor quality? Once it’s due to the poor quality, we will arrange the new products to customers.
2. For missing quantities, there have 2 weeks for claiming the missing ones after receiving the goods. We shall help to find out where it is.
After-sales Service: | Yes |
---|---|
Warranty: | 12 Month |
Type: | Wheel Hub Bearing |
Material: | Chrome Steel |
Tolerance: | P0 |
Certification: | ISO9001, TS16949 |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
How do I diagnose and address noise issues associated with a malfunctioning axle hub?
Diagnosing and addressing noise issues associated with a malfunctioning axle hub requires a systematic approach to identify the root cause and take appropriate corrective measures. Here’s a detailed explanation of the diagnostic process and steps to address the problem:
1. Identify the Noise:
The first step is to identify the specific noise associated with the malfunctioning axle hub. Pay attention to the type and characteristics of the noise, such as grinding, growling, clicking, or humming. Note when the noise occurs, whether it’s during acceleration, deceleration, or while turning. This initial identification can help narrow down the possible causes.
2. Inspect the Axle Hub:
Visually inspect the axle hub for any signs of damage or wear. Look for cracks, corrosion, or loose components. Check if there is any leaking grease around the hub, as it can indicate bearing failure. A thorough inspection can provide valuable clues about the condition of the axle hub.
3. Perform a Road Test:
Take the vehicle for a road test to observe the noise and its behavior under different driving conditions. Pay attention to any changes in the noise when making turns, accelerating, or braking. Note whether the noise gets louder or changes in pitch. This can help in further narrowing down the issue.
4. Jack up the Vehicle:
If the noise persists and is suspected to be coming from the axle hub, jack up the vehicle and secure it with jack stands. Rotate the wheel associated with the suspected axle hub and listen for any abnormal noise or roughness. Try to wiggle the wheel by hand to check for excessive play or looseness, which can indicate a problem with the hub assembly.
5. Check Wheel Bearings:
A common cause of noise issues in axle hubs is worn-out or damaged wheel bearings. To check the wheel bearings, grasp the tire at the 12 o’clock and 6 o’clock positions and attempt to rock it back and forth. Excessive movement or play indicates a potential problem with the wheel bearings. Additionally, spin the wheel and listen for any grinding or rumbling noises, which can also be indicative of bearing issues.
6. Addressing the Issue:
If a malfunctioning axle hub is identified as the source of the noise, the following steps can be taken to address the problem:
- Replacement: If the axle hub is severely damaged or the bearings are worn out, replacing the entire hub assembly is often recommended. This ensures proper fitment, bearing integrity, and overall reliability. Consult the vehicle’s service manual or seek professional assistance for the correct replacement procedure.
- Bearing Replacement: In some cases, it may be possible to replace the wheel bearings within the axle hub if they are the sole source of the noise issue. This requires specialized tools and expertise, so it is advisable to consult a qualified mechanic for bearing replacement.
- Additional Repairs: Depending on the severity of the issue, it may be necessary to address other related components. This can include replacing damaged CV joints, inspecting and replacing worn brake components, or addressing any other issues identified during the diagnostic process.
7. Post-Repair Verification:
After addressing the noise issue by repairing or replacing the malfunctioning axle hub, take the vehicle for a test drive to verify that the noise is eliminated. Ensure that the vehicle operates smoothly, and there are no abnormal vibrations or noises coming from the axle hub during different driving conditions.
It’s important to note that diagnosing and addressing noise issues associated with a malfunctioning axle hub can be complex, and it may require the expertise of a qualified mechanic. If you’re uncomfortable performing the diagnostics and repairs yourself, it’s advisable to seek professional assistance to ensure an accurate diagnosis and proper resolution of the issue.
In summary, diagnosing and addressing noise issues associated with a malfunctioning axle hub involves identifying the noise, inspecting the hub, performing a road test, checking wheel bearings, and taking appropriate repair or replacement measures. Following a systematic approach and seeking professional help when needed can help resolve the noise issue and ensure the safe operation of the vehicle.
Where can I find a comprehensive guide for DIY replacement of an axle hub?
If you are looking for a comprehensive guide to assist you with the DIY (Do-It-Yourself) replacement of an axle hub, there are several reliable sources you can refer to. Here’s a detailed explanation:
- Manufacturer’s Service Manual: The first and most authoritative source of information for any vehicle repair or maintenance task is the manufacturer’s service manual. The service manual provides detailed instructions, diagrams, and specifications specific to your vehicle’s make, model, and year. It covers all aspects of the vehicle, including axle hub replacement procedures. You can usually obtain the manufacturer’s service manual from the vehicle manufacturer’s official website or through authorized dealerships.
- Online Repair Guides: Many reputable automotive websites and forums offer comprehensive online repair guides. These guides often include step-by-step instructions, accompanied by photographs or illustrations, to help you through the process of replacing an axle hub. Some websites compile user-contributed guides, while others are created by automotive professionals. Popular sources for online repair guides include AutoZone, RepairPal, and iFixit.
- Video Tutorials: Video tutorials can be invaluable resources for visual learners. Websites like YouTube host a wide range of DIY automotive repair videos that cover various tasks, including axle hub replacement. Watching a video tutorial can provide a clear demonstration of the required steps, tools, and techniques involved in the process. You can search for specific video tutorials by using keywords such as “DIY axle hub replacement” along with your vehicle’s make and model.
- Automotive Forums: Online automotive forums are communities where enthusiasts and professionals share knowledge and experiences. Forums like Reddit’s r/MechanicAdvice, Automotive Forums, or specific forums dedicated to your vehicle’s make or model can be excellent sources of information. You can search or post questions specific to axle hub replacement, and experienced members may provide detailed guidance, tips, or even links to comprehensive guides they have found useful.
- Library Resources: Public libraries often have a selection of automotive repair manuals and guides available for borrowing. These printed resources can provide comprehensive instructions and illustrations for various repair tasks, including axle hub replacement. Look for repair manuals specific to your vehicle’s make, model, and year in the automotive section of your local library.
When using any guide or resource for DIY repairs, it’s important to exercise caution and ensure your own safety. Follow all recommended safety procedures, use the appropriate tools, and take necessary precautions. If you are unsure or uncomfortable with any aspect of the repair process, it is advisable to seek assistance from a qualified mechanic or professional technician.
In summary, a comprehensive guide for DIY replacement of an axle hub can be found in various sources such as the manufacturer’s service manual, online repair guides, video tutorials, automotive forums, and library resources. These resources provide step-by-step instructions and guidance to help you successfully replace an axle hub. Remember to prioritize safety and seek professional help if needed.
Where can I access reliable resources for understanding the relationship between axles and hubs?
When seeking reliable resources to understand the relationship between axles and hubs, there are several avenues you can explore. Here’s a detailed explanation:
1. Manufacturer’s Documentation: The first place to look for information is the official documentation provided by the vehicle manufacturer. Consult the owner’s manual or technical service manuals for your specific vehicle model. These resources often contain detailed explanations, diagrams, and specifications regarding axles and hubs, including their relationship and functionality.
2. Automotive Repair and Service Manuals: Automotive repair and service manuals, such as those published by Haynes or Chilton, can be valuable sources of information. These manuals provide comprehensive guidance on various vehicle systems, including axles and hubs. They often include step-by-step instructions, diagrams, and troubleshooting tips to help you understand the relationship between axles and hubs.
3. Online Forums and Communities: Online forums and communities dedicated to automotive enthusiasts or specific vehicle makes and models can be excellent resources. These platforms provide opportunities to interact with experienced individuals who may have in-depth knowledge about axles and hubs. Participating in discussions, asking questions, and sharing experiences can help you gain insights and a better understanding of the relationship between axles and hubs.
4. Professional Mechanics and Technicians: Consulting with professional mechanics or technicians who specialize in your specific vehicle make or have expertise in axles and hubs can provide valuable information. They can explain the relationship between axles and hubs, answer your questions, and provide practical insights based on their experience. Local service centers or authorized dealerships are good places to seek professional advice.
5. Educational Institutions: Technical schools, vocational programs, and community colleges often offer courses or resources related to automotive technology. Consider exploring their curriculum or reaching out to instructors who can provide educational materials or guidance on understanding axles and hubs.
6. Online Research and Publications: Conducting online research can lead you to various publications, articles, and websites that provide information on axles and hubs. However, it’s crucial to critically evaluate the credibility and reliability of the sources. Look for reputable websites, publications from trusted automotive organizations, or articles written by experts in the field.
Remember to cross-reference information from multiple sources to ensure accuracy and reliability. It’s also important to stay up to date with the latest advancements and industry standards in the automotive field, as knowledge and technology can evolve over time.
In summary, to access reliable resources for understanding the relationship between axles and hubs, consider consulting manufacturer’s documentation, automotive repair manuals, online forums, professional mechanics, educational institutions, and conducting online research. By exploring these avenues, you can gain comprehensive knowledge and a better understanding of the relationship between axles and hubs.
editor by CX 2023-11-09
China factory Good Quality Auto Parts Rear Axle Car Wheel Hub for Peugeot 206 Hub Unit Bearing Vkba3659 OEM 3748.76 3748.79 boat trailer axle
Product Description
Basic information:
Description | Good Quality Rear Axle Car Wheel Hub For PEUGEOT 206 Hub Unit Bearing VKBA3659 OEM 3748.76 3748.79 |
Material | Chrome steel Gcr15 |
Application | For CITROEN For PEUGEOT |
Size | Rim Hole Number: 4 Flange Ø: 129 mm |
Position | Rear wheel |
With ABS | with integrated ABS sensor |
Bolts | 4 holes |
Weight | 1.85 kg |
Brand | SI, PPB, or customized |
Packing | Neutral, SI, PPB brand packing or customized |
OEM/ODM service | Yes |
Manufacture place | ZHangZhoug, China |
MOQ | 50 PCS |
OEM replacement | Yes |
Inspection | 100% |
Warranty | 1 year or 40,000-50,000 KMS |
Certificate | ISO9001:2015 TS16949 |
Payment | T/T, PayPal, Alibaba |
Detailed pictures:
Wheel bearing kits components:
Bearing 1
Nut 1
Sealing/Protective Cap 1
O.E.:
3748.76
3748.79
Ref.:
F-AG:
FEBI BILSTEIN: 31185
OPTIMAL: 657151
S-KF: VKBA 3659
SNR: R166.32
Application:
For CITROEN C3 I (FC_) (2002/02 – /)
For CITROEN C3 Pluriel (HB_) (2003/05 – /)
For CITROEN C2 (JM_) (2003/09 – /)
For CITROEN C3 II (2009/11 – /)
For CITROEN C2 ENTERPRISE (2009/04 – /)
For PEUGEOT 206 Hatchback (2A/C) (1998/08 – /)
For PEUGEOT 206 CC (2D) (2000/09 – /)
For PEUGEOT 206 SW (2E/K) (2002/07 – /)
For PEUGEOT 1007 (KM_) (2005/04 – /)
For PEUGEOT 206 Saloon (2007/03 – /)
How to extend the bearing’s life?
Don’t allow strong impact, such as hammer striking, transfer roller pressure
Use the accurate installation tool, avoid using cloth kind and short fibers
Lubricate the bearing to avoid rust with high-quality oil
General inspection, such as the surrounding temperature, vibrate, noise inspection
Keep bearing cleaning from dirt, dust, pollutant, and moisture.
The bearing should not be ultra cooled.
Front Wheel Bearing Hub Assembly Replacement, Wheel Bearing & Hub Assembly, Hub Bearing Assembly, front bearing hub replacement, hub and bearing replacement, wheel hub bearings, front wheel bearing hub assembly, front wheel bearing hub replacement, hub bearing assembly front, wheel hub assembly, bearing assembly, Front Wheel Bearing and Hub Assembly, Front Wheel Drive Hub and Bearing Assembly
Packing and Delivery:
Work shop:
Exhibitions:
FAQ:
Q1.What is your shipping logistic?
Re: DHL, TNT, FedEx express, by air/sea/train.
Q2:What’s the MOQ?
Re: For the wheel hub assembly. The MOQ is always 50 sets. If ordering together with other models, small quantities can be organized. But need more time due to the production schedule.
Q3. What are your goods of packing?
Re: Generally, our goods will be packed in Neutral white or brown boxes for the hub bearing unit. Our brand packing SI & CZPT are offered. If you have any other packing requests, we shall also handle them.
Q4. What is your sample policy?
Re: We can supply the sample if we have ready parts in stock.
Q5. Do you have any certificates?
Re: Yes, we have the certificate of ISO9001:2015.
Q6:Any warranty of your products.
Re: Sure, We are offering a guarantee for 12 months or 40,000-50,000 km for the aftermarket.
Q7: How can I make an inquiry?
Re: You can contact us by email, telephone, WhatsApp, , etc.
Q8: How long can reply inquiry?
Re: Within 24 hours.
Q9: What’s the delivery time?
Re: Ready stock 10-15 days, production for 30 to 45 days.
Q10: How do you maintain our good business relationship?
Re: 1. Keep stable, reliable quality, competitive price to ensure our customer’s benefit;
2. Optimal lead time.
3. Keep customers updated about the new goods.
4. Make customers satisfaction as our main goal.
Q11: Can we visit the company & factory?
Re: Yes, welcome for your visit & business discussion.
After-sales Service: | Yes |
---|---|
Warranty: | Yes |
Type: | Wheel Hub Bearing |
Samples: |
US$ 50/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
Are there differences between front and rear axle hubs in terms of design and function?
Yes, there are differences between front and rear axle hubs in terms of design and function. Here’s a detailed explanation of these differences:
1. Design:
The design of front and rear axle hubs can vary based on the specific requirements of each axle position.
Front Axle Hubs: Front axle hubs are typically more complex in design compared to rear axle hubs. This is because front axle hubs are often responsible for connecting the wheels to the steering system and accommodating the front-wheel drive components. Front axle hubs may have provisions for attaching CV (constant velocity) joints, which are necessary for transmitting power from the engine to the front wheels in front-wheel drive or all-wheel drive vehicles. The design of front axle hubs may also incorporate features for connecting the brake rotor, allowing for the integration of the braking system.
Rear Axle Hubs: Rear axle hubs generally have a simpler design compared to front axle hubs. They are primarily responsible for connecting the wheels to the rear axle shafts and supporting the wheel bearings. Rear axle hubs may not require the same level of complexity as front axle hubs since they do not need to accommodate steering components or transmit power from the engine. However, rear axle hubs still play a critical role in supporting the weight of the vehicle, transmitting driving forces, and integrating with the brake system.
2. Function:
The function of front and rear axle hubs differs based on the specific demands placed on each axle position.
Front Axle Hubs: Front axle hubs have the following primary functions:
- Connect the wheel to the steering system, allowing for controlled steering and maneuverability.
- Support the wheel bearings to facilitate smooth wheel rotation and weight distribution.
- Integrate with the front-wheel drive components, such as CV joints, to transmit power from the engine to the front wheels.
- Provide a mounting point for the brake rotor or drum, allowing for the integration of the braking system.
Rear Axle Hubs: Rear axle hubs have the following primary functions:
- Connect the wheel to the rear axle shaft, facilitating power transmission and driving forces.
- Support the wheel bearings to enable smooth wheel rotation and weight distribution.
- Integrate with the brake system, providing a mounting point for the brake rotor or drum for braking performance.
3. Load Distribution:
Front and rear axle hubs also differ in terms of load distribution.
Front Axle Hubs: Front axle hubs bear the weight of the engine, transmission, and other front-end components. They also handle a significant portion of the vehicle’s braking forces during deceleration. As a result, front axle hubs need to be designed to handle higher loads and provide sufficient strength and durability.
Rear Axle Hubs: Rear axle hubs primarily bear the weight of the vehicle’s rear end and support the differential and rear axle shafts. The braking forces on the rear axle hubs are typically lower compared to the front axle hubs. However, they still need to be robust enough to handle the forces generated during acceleration, deceleration, and cornering.
In summary, there are differences between front and rear axle hubs in terms of design and function. Front axle hubs are typically more complex and accommodate steering components and front-wheel drive systems, while rear axle hubs have a simpler design focused on supporting the rear axle and integrating with the brake system. Understanding these differences is important for proper maintenance and repair of the axle hubs in a vehicle.
Are there specific tools required for DIY axle hub replacement, and where can I find them?
When undertaking a DIY axle hub replacement, certain tools are needed to ensure a smooth and successful process. Here are some specific tools that are commonly required for DIY axle hub replacement and where you can find them:
- Jack and jack stands: These tools are essential for raising the vehicle off the ground and providing a stable support system. You can find jacks and jack stands at automotive supply stores, hardware stores, and online retailers.
- Lug wrench or socket set: A lug wrench or a socket set with the appropriate size socket is necessary to loosen and tighten the lug nuts on the wheel. These tools are commonly available at automotive supply stores, hardware stores, and online retailers.
- Torque wrench: A torque wrench is required to tighten the lug nuts on the wheel and other fasteners to the manufacturer’s recommended torque specifications. Torque wrenches can be found at automotive supply stores, tool stores, and online retailers.
- Pry bar: A pry bar is useful for gently separating the axle hub assembly from the mounting point, especially if it is tightly secured. Pry bars are available at automotive supply stores, hardware stores, and online retailers.
- Hammer: A hammer can be used to tap or lightly strike the axle hub assembly or its components for removal or installation. Hammers are commonly available at hardware stores, tool stores, and online retailers.
- Wheel bearing grease: High-quality wheel bearing grease is necessary for lubricating the axle hub assembly and ensuring smooth operation. Wheel bearing grease can be purchased at automotive supply stores, lubricant suppliers, and online retailers.
- Additional tools: Depending on the specific vehicle and axle hub assembly, you may require additional tools such as a socket set, wrenches, pliers, or specific specialty tools. Consult the vehicle’s service manual or online resources for the specific tools needed for your vehicle model.
To find these tools, you can visit local automotive supply stores, hardware stores, or tool stores in your area. They typically carry a wide range of automotive tools and equipment. Alternatively, you can explore online retailers that specialize in automotive tools and equipment, where you can conveniently browse and purchase the tools you need.
It’s important to ensure that the tools you acquire are of good quality and suitable for the task at hand. Investing in quality tools can make the DIY axle hub replacement process more efficient and help achieve better results. Additionally, always follow the manufacturer’s instructions and safety guidelines when using tools and equipment.
In summary, specific tools are required for DIY axle hub replacement, such as a jack and jack stands, lug wrench or socket set, torque wrench, pry bar, hammer, and wheel bearing grease. These tools can be found at automotive supply stores, hardware stores, tool stores, and online retailers. Acquiring quality tools and following proper safety guidelines will contribute to a successful DIY axle hub replacement.
What are the torque specifications for securing an axle hub to the vehicle?
The torque specifications for securing an axle hub to the vehicle may vary depending on the specific make, model, and year of the vehicle. It is crucial to consult the manufacturer’s service manual or appropriate technical resources for the accurate torque specifications for your particular vehicle. Here’s a detailed explanation:
- Manufacturer’s Service Manual: The manufacturer’s service manual is the most reliable and authoritative source for torque specifications. It provides detailed information specific to your vehicle, including the recommended torque values for various components, such as the axle hub. The service manual may specify different torque values for different vehicle models or configurations. You can usually obtain the manufacturer’s service manual from the vehicle manufacturer’s official website or through authorized dealerships.
- Technical Resources: In addition to the manufacturer’s service manual, there are other technical resources available that provide torque specifications. These resources may include specialized automotive repair guides, online databases, or torque specification charts. Reputable automotive websites, professional repair manuals, or automotive forums dedicated to your vehicle’s make or model can be valuable sources for finding accurate torque specifications.
- Online Databases: Some websites offer online databases or torque specification tools that allow you to search for specific torque values based on your vehicle’s make, model, and year. These databases compile torque specifications from various sources and provide a convenient way to access the required information. However, it’s important to verify the accuracy and reliability of the source before relying on the provided torque values.
- Manufacturer Recommendations: In certain cases, the manufacturer may provide torque specifications on the packaging or documentation that accompanies the replacement axle hub. If you are using an OEM (Original Equipment Manufacturer) or aftermarket axle hub, it is advisable to check any provided documentation for torque recommendations specific to that particular product.
Regardless of the source you use to obtain torque specifications, it is essential to follow the recommended values precisely. Torque specifications are specified to ensure proper tightening and secure attachment of the axle hub to the vehicle. Over-tightening or under-tightening can lead to issues such as damage to components, improper seating, or premature wear. It is recommended to use a reliable torque wrench to achieve the specified torque values accurately.
In summary, the torque specifications for securing an axle hub to the vehicle depend on the specific make, model, and year of the vehicle. The manufacturer’s service manual, technical resources, online databases, and manufacturer recommendations are valuable sources to obtain accurate torque specifications. It is crucial to follow the recommended torque values precisely to ensure proper installation and avoid potential issues.
editor by CX 2023-10-30
China factory 52710-29461 Vkba3794 Auto Spare Part Car Accessories Rear Axle Wheel Hub Bearing Units Assemblies for Hyundai near me shop
Product Description
Product Description
BASIC INFORMATION
Description | 52710-29461 VKBA3794 Auto Spare Part Car Accessories Rear Axle Wheel Hub Bearing Units Assemblies for HYUNDAI | |
OE Number | 52710-29461 | |
Size | Inner Diameter: 28 mm Flange Diameter: 138.9 mm Bolt Circle Diameter: 4.50 In. Wheel Pilot Diameter: 2.64 In. Brake Pilot Diameter: 2.99 In. Flange Offset: 1.84 In. Hub Pilot Diameter: 2.64 In. Bolt Size: M12X1.5 Bolt Quantity: 4 Bolt Hole qty: N/A ABS Sensor: Has ABS with Tone Ring Sensor Number of Splines: N/A |
|
Position | Rear Axle Left and Right | |
Brand | SI, PPB | |
Weight | 2.14 Kgs | |
Place of Origin | ZHangZhoug, China | |
Certification | ISO9 OPTIMAL : 922979 QUINTON HAZELL : QWB1077 |
RUVILLE : 8411 SPIDAN : 27076 SPIDAN : 27581 |
APPLICABLE CAR MODELS
Vehicle Models | Cons.Type | Active Years | Service | Engine |
HYUNDAI ACCENT I (X-3) 1.3 | Hatchback | 1994 – 2000 | 75 / 55 | G4DH, G4EH |
HYUNDAI ACCENT I (X-3) 1.3 | Hatchback | 1994 – 2000 | 60 / 44 | G4CH, G4EH |
HYUNDAI ACCENT I (X-3) 1.3 i 12V | Hatchback | 1994 – 2000 | 84 / 62 | G4EH |
HYUNDAI ACCENT I (X-3) 1.5 i 12V | Hatchback | 1994 – 2000 | 88 / 65 | G4EK |
HYUNDAI ACCENT I (X-3) 1.5 i 16V | Hatchback | 1995 – 2000 | 99 / 73 | G4FK |
DETAILED IMAGES
PACKAGING & SHIPPING
Packaging Details | 1 piece in a single box 10 boxes in a carton 40 cartons in a pallet |
Nearest Port | ZheJiang or HangZhou |
Lead Time | For stock parts: 1-5 days. If no stock parts: <2000 pcs: 10-20 days ≥2000 pcs: to be negotiated. |
Company Profile
Our Advantages
1.ISO Standard
2.Bearing Small order accepted
3.In Stock bearing
4.OEM bearing service
5.Professional Technical Support
6.Timely pre-sale service
7.Competitive price
8.Full range of products on auto bearings
9.Punctual Delivery
11.Excellent after-sale service
Packaging & Shipping
The Different Types of Splines in a Splined Shaft
A splined shaft is a machine component with internal and external splines. The splines are formed in 4 different ways: Involute, Parallel, Serrated, and Ball. You can learn more about each type of spline in this article. When choosing a splined shaft, be sure to choose the right 1 for your application. Read on to learn about the different types of splines and how they affect the shaft’s performance.
Involute splines
Involute splines in a splined shaft are used to secure and extend mechanical assemblies. They are smooth, inwardly curving grooves that resist separation during operation. A shaft with involute splines is often longer than the shaft itself. This feature allows for more axial movement. This is beneficial for many applications, especially in a gearbox.
The involute spline is a shaped spline, similar to a parallel spline. It is angled and consists of teeth that create a spiral pattern that enables linear and rotatory motion. It is distinguished from other splines by the serrations on its flanks. It also has a flat top. It is a good option for couplers and other applications where angular movement is necessary.
Involute splines are also called involute teeth because of their shape. They are flat on the top and curved on the sides. These teeth can be either internal or external. As a result, involute splines provide greater surface contact, which helps reduce stress and fatigue. Regardless of the shape, involute splines are generally easy to machine and fit.
Involute splines are a type of splines that are used in splined shafts. These splines have different names, depending on their diameters. An example set of designations is for a 32-tooth male spline, a 2,500-tooth module, and a 30 degree pressure angle. An example of a female spline, a fillet root spline, is used to describe the diameter of the splined shaft.
The effective tooth thickness of splines is dependent on the number of keyways and the type of spline. Involute splines in splined shafts should be designed to engage 25 to 50 percent of the spline teeth during the coupling. Involute splines should be able to withstand the load without cracking.
Parallel splines
Parallel splines are formed on a splined shaft by putting 1 or more teeth into another. The male spline is positioned at the center of the female spline. The teeth of the male spline are also parallel to the shaft axis, but a common misalignment causes the splines to roll and tilt. This is common in many industrial applications, and there are a number of ways to improve the performance of splines.
Typically, parallel splines are used to reduce friction in a rotating part. The splines on a splined shaft are narrower on the end face than the interior, which makes them more prone to wear. This type of spline is used in a variety of industries, such as machinery, and it also allows for greater efficiency when transmitting torque.
Involute splines on a splined shaft are the most common. They have equally spaced teeth, and are therefore less likely to crack due to fatigue. They also tend to be easy to cut and fit. However, they are not the best type of spline. It is important to understand the difference between parallel and involute splines before deciding on which spline to use.
The difference between splined and involute splines is the size of the grooves. Involute splines are generally larger than parallel splines. These types of splines provide more torque to the gear teeth and reduce stress during operation. They are also more durable and have a longer life span. And because they are used on farm machinery, they are essential in this type of application.
Serrated splines
A Serrated Splined Shaft has several advantages. This type of shaft is highly adjustable. Its large number of teeth allows large torques, and its shorter tooth width allows for greater adjustment. These features make this type of shaft an ideal choice for applications where accuracy is critical. Listed below are some of the benefits of this type of shaft. These benefits are just a few of the advantages. Learn more about this type of shaft.
The process of hobbing is inexpensive and highly accurate. It is useful for external spline shafts, but is not suitable for internal splines. This type of process forms synchronized shapes on the shaft, reducing the manufacturing cycle and stabilizing the relative phase between spline and thread. It uses a grinding wheel to shape the shaft. CZPT Manufacturing has a large inventory of Serrated Splined Shafts.
The teeth of a Serrated Splined Shaft are designed to engage with the hub over the entire circumference of the shaft. The teeth of the shaft are spaced uniformly around the spline, creating a multiple-tooth point of contact over the entire length of the shaft. The results of these analyses are usually satisfactory. But there are some limitations. To begin with, the splines of the Serrated Splined Shaft should be chosen carefully. If the application requires large-scale analysis, it may be necessary to modify the design.
The splines of the Serrated Splined Shaft are also used for other purposes. They can be used to transmit torque to another device. They also act as an anti-rotational device and function as a linear guide. Both the design and the type of splines determine the function of the Splined Shaft. In the automobile industry, they are used in vehicles, aerospace, earth-moving machinery, and many other industries.
Ball splines
The invention relates to a ball-spinned shaft. The shaft comprises a plurality of balls that are arranged in a series and are operatively coupled to a load path section. The balls are capable of rolling endlessly along the path. This invention also relates to a ball bearing. Here, a ball bearing is 1 of the many types of gears. The following discussion describes the features of a ball bearing.
A ball-splined shaft assembly comprises a shaft with at least 1 ball-spline groove and a plurality of circumferential step grooves. The shaft is held in a first holding means that extends longitudinally and is rotatably held by a second holding means. Both the shaft and the first holding means are driven relative to 1 another by a first driving means. It is possible to manufacture a ball-splined shaft in a variety of ways.
A ball-splined shaft features a nut with recirculating balls. The ball-splined nut rides in these grooves to provide linear motion while preventing rotation. A splined shaft with a nut that has recirculating balls can also provide rotary motion. A ball splined shaft also has higher load capacities than a ball bushing. For these reasons, ball splines are an excellent choice for many applications.
In this invention, a pair of ball-spinned shafts are housed in a box under a carrier device 40. Each of the 2 shafts extends along a longitudinal line of arm 50. One end of each shaft is supported rotatably by a slide block 56. The slide block also has a support arm 58 that supports the center arm 50 in a cantilever fashion.
Sector no-go gage
A no-go gauge is a tool that checks the splined shaft for oversize. It is an effective way to determine the oversize condition of a splined shaft without removing the shaft. It measures external splines and serrations. The no-go gage is available in sizes ranging from 19mm to 130mm with a 25mm profile length.
The sector no-go gage has 2 groups of diametrally opposed teeth. The space between them is manufactured to a maximum space width and the tooth thickness must be within a predetermined tolerance. This gage would be out of tolerance if the splines were measured with a pin. The dimensions of this splined shaft can be found in the respective ANSI or DIN standards.
The go-no-go gage is useful for final inspection of thread pitch diameter. It is also useful for splined shafts and threaded nuts. The thread of a screw must match the contour of the go-no-go gage head to avoid a no-go condition. There is no substitute for a quality machine. It is an essential tool for any splined shaft and fastener manufacturer.
The NO-GO gage can detect changes in tooth thickness. It can be calibrated under ISO17025 standards and has many advantages over a non-go gage. It also gives a visual reference of the thickness of a splined shaft. When the teeth match, the shaft is considered ready for installation. It is a critical process. In some cases, it is impossible to determine the precise length of the shaft spline.
The 45-degree pressure angle is most commonly used for axles and torque-delivering members. This pressure angle is the most economical in terms of tool life, but the splines will not roll neatly like a 30 degree angle. The 45-degree spline is more likely to fall off larger than the other two. Oftentimes, it will also have a crowned look. The 37.5 degree pressure angle is a compromise between the other 2 pressure angles. It is often used when the splined shaft material is harder than usual.
China manufacturer Rear Axle Hub Bearing 42410-02020 42410-12090 512018 for Japanese Car Wheel Parts with Hot selling
Product Description
Surface Treatment | polishing |
Size | Drawing |
Certificate | ISO9001:2008; TS16949 |
MOQ | 1 sets |
Packing | Customized |
Sample | Available |
Lead time | 10~30days depend on order |
1.Q:Are you trading company or manufacturer?
A: We are factory with more then 15years experience
2.Q: How long is your delivery time?
A: Generally it is 15-30days as we are Customized service we confirm with Customer
when place order
3.Q:Do you provide samples? ls it free or extra?
A: Yes we provide samples .for sample charge as per sample condition to decide free
or charged ,usually for not too much time used consumed machining process are free
4.Q:What is your terms of payment?
30% T/T in advance balance before shipment .Or as per discussion
5.Q: Can we know the production process without visiting the factory?
A:We will offer detailed production schedule and send weekly reports with digital
pictures and videos which show the machining progress
6.Q:Available for customized design drawings?
A: YesDWG.DXF.DXW.IGES.STEP. PDF etc
7.Q:Available for customized design drawings?
A: Yes ,we can sign the NDA before your send the drawing
8.Q:How do you guarantee the quality?
A:(1) Checking the raw material after they reach our factory——
Incoming quality control(IQC)
(2) Checking the details before the production line operated
(3) Have a full inspection and routing inspection during mass production—
In-process quality control(IPQC)
(4) Checking the goods after they are finished—- Final quality control(FQC)
(5) Checking the goods after they are finished—–Outgoing quality control(QC)
(6)100% inspection and delivery before shipment.
The Benefits of Spline Couplings for Disc Brake Mounting Interfaces
Spline couplings are commonly used for securing disc brake mounting interfaces. Spline couplings are often used in high-performance vehicles, aeronautics, and many other applications. However, the mechanical benefits of splines are not immediately obvious. Listed below are the benefits of spline couplings. We’ll discuss what these advantages mean for you. Read on to discover how these couplings work.
Disc brake mounting interfaces are splined
There are 2 common disc brake mounting interfaces – splined and six-bolt. Splined rotors fit on splined hubs; six-bolt rotors will need an adapter to fit on six-bolt hubs. The six-bolt method is easier to maintain and may be preferred by many cyclists. If you’re thinking of installing a disc brake system, it is important to know how to choose the right splined and center lock interfaces.
Aerospace applications
The splines used for spline coupling in aircraft are highly complex. While some previous researches have addressed the design of splines, few publications have tackled the problem of misaligned spline coupling. Nevertheless, the accurate results we obtained were obtained using dedicated simulation tools, which are not commercially available. Nevertheless, such tools can provide a useful reference for our approach. It would be beneficial if designers could use simple tools for evaluating contact pressure peaks. Our analytical approach makes it possible to find answers to such questions.
The design of a spline coupling for aerospace applications must be accurate to minimize weight and prevent failure mechanisms. In addition to weight reduction, it is necessary to minimize fretting fatigue. The pressure distribution on the spline coupling teeth is a significant factor in determining its fretting fatigue. Therefore, we use analytical and experimental methods to examine the contact pressure distribution in the axial direction of spline couplings.
The teeth of a spline coupling can be categorized by the type of engagement they provide. This study investigates the position of resultant contact forces in the teeth of a spline coupling when applied to pitch diameter. Using FEM models, numerical results are generated for nominal and parallel offset misalignments. The axial tooth profile determines the behavior of the coupling component and its ability to resist wear. Angular misalignment is also a concern, causing misalignment.
In order to assess wear damage of a spline coupling, we must take into consideration the impact of fretting on the components. This wear is caused by relative motion between the teeth that engage them. The misalignment may be caused by vibrations, cyclical tooth deflection, or angular misalignment. The result of this analysis may help designers improve their spline coupling designs and develop improved performance.
CZPT polyimide, an abrasion-resistant polymer, is a popular choice for high-temperature spline couplings. This material reduces friction and wear, provides a low friction surface, and has a low wear rate. Furthermore, it offers up to 50 times the life of metal on metal spline connections. For these reasons, it is important to choose the right material for your spline coupling.
High-performance vehicles
A spline coupler is a device used to connect splined shafts. A typical spline coupler resembles a short pipe with splines on either end. There are 2 basic types of spline coupling: single and dual spline. One type attaches to a drive shaft, while the other attaches to the gearbox. While spline couplings are typically used in racing, they’re also used for performance problems.
The key challenge in spline couplings is to determine the optimal dimension of spline joints. This is difficult because no commercial codes allow the simulation of misaligned joints, which can destroy components. This article presents analytical approaches to estimating contact pressures in spline connections. The results are comparable with numerical approaches but require special codes to accurately model the coupling operation. This research highlights several important issues and aims to make the application of spline couplings in high-performance vehicles easier.
The stiffness of spline assemblies can be calculated using tooth-like structures. Such splines can be incorporated into the spline joint to produce global stiffness for torsional vibration analysis. Bearing reactions are calculated for a certain level of misalignment. This information can be used to design bearing dimensions and correct misalignment. There are 3 types of spline couplings.
Major diameter fit splines are made with tightly controlled outside diameters. This close fit provides concentricity transfer from the male to the female spline. The teeth of the male spline usually have chamfered tips and clearance with fillet radii. These splines are often manufactured from billet steel or aluminum. These materials are renowned for their strength and uniform grain created by the forging process. ANSI and DIN design manuals define classes of fit.
Disc brake mounting interfaces
A spline coupling for disc brake mounting interfaces is a type of hub-to-brake-disc mount. It is a highly durable coupling mechanism that reduces heat transfer from the disc to the axle hub. The mounting arrangement also isolates the axle hub from direct contact with the disc. It is also designed to minimize the amount of vehicle downtime and maintenance required to maintain proper alignment.
Disc brakes typically have substantial metal-to-metal contact with axle hub splines. The discs are held in place on the hub by intermediate inserts. This metal-to-metal contact also aids in the transfer of brake heat from the brake disc to the axle hub. Spline coupling for disc brake mounting interfaces comprises a mounting ring that is either a threaded or non-threaded spline.
During drag brake experiments, perforated friction blocks filled with various additive materials are introduced. The materials included include Cu-based powder metallurgy material, a composite material, and a Mn-Cu damping alloy. The filling material affects the braking interface’s wear behavior and friction-induced vibration characteristics. Different filling materials produce different types of wear debris and have different wear evolutions. They also differ in their surface morphology.
Disc brake couplings are usually made of 2 different types. The plain and HD versions are interchangeable. The plain version is the simplest to install, while the HD version has multiple components. The two-piece couplings are often installed at the same time, but with different mounting interfaces. You should make sure to purchase the appropriate coupling for your vehicle. These interfaces are a vital component of your vehicle and must be installed correctly for proper operation.
Disc brakes use disc-to-hub elements that help locate the forces and displace them to the rim. These elements are typically made of stainless steel, which increases the cost of manufacturing the disc brake mounting interface. Despite their benefits, however, the high braking force loads they endure are hard on the materials. Moreover, excessive heat transferred to the intermediate elements can adversely affect the fatigue life and long-term strength of the brake system.
China Professional for Honda Civic Car Spare Part Front Axle Wheel Hub Bearing Vkba7469 43X78X44mm 44300-Sna-951 near me factory
Product Description
Basic information:
Description | HONDA CIVIC Car Spare Part Front Axle Wheel Hub Bearing VKBA7469 43x78x44mm 44300-SNA-951 |
Material | Chrome steel Gcr15 |
Application | For HONDA |
Size | Inner: 43mm Outer: 78mm Width: 44mm |
Position | Front wheel hub bearing |
With ABS | Yes |
Weight | 0.9kg |
Brand | SI, PPB, or customized |
Packing | Neutral, SI, PPB brand packing or customized |
OEM/ODM service | Yes |
Manufacture place | ZHangZhoug, China |
MOQ | 50 PCS |
OEM replacement | Yes |
Inspection | 100% |
Warranty | 1 year or 40,000-50,000 KMS |
Certificate | ISO9001:2015 TS16949 |
Payment | T/T, PayPal, Alibaba |
Features | Specialized features/benefits Less vibration and noise Less energy consumption Quality approvals Improved fatigue life Reduced noise vibration Super finished raceways |
Detailed pictures:
O.E.:
44300-SMG-G01
44300-SNA-951
44300-SNA-952
44300-TR0-951
44300-TR0-952
44300-TS4-951
44300-TV0-E01
Ref.:
For FAG:
For FAG:
For FEBI BILSTEIN: 31451
For OPTIMAL: 911299
For OPTIMAL: 911643
For SKF: VKBA 7469
For SNR: R174.42
For SNR: R174.68
Application:
For HONDA CIVIC IX 2011-
For HONDA CIVIC VIII 2005-
Packing and Delivery:
Plant View:
Exhibitions:
FAQ:
Q1.What is your shipping logistic?
Re: DHL, TNT, FedEx express, by air/sea/train.
Q2:What’s the MOQ?
Re: For the wheel hub bearing repair kit. The MOQ is always 50-100 sets. If ordering together with other models, small quantities can be organized. But need more time due to the production schedule.
Q3. What are your goods of packing?
Re: Generally, our goods will be packed in Neutral white or brown boxes for the hub bearing unit. Our brand packing SI & CZPT are offered. If you have any other packing requests, we shall also handle them.
Q4. What is your sample policy?
Re: We can supply the sample if we have ready parts in stock.
Q5. Do you have any certificates?
Re: Yes, we have the certificate of ISO9001:2015.
Q6:Any warranty of your products.
Re: Sure, We are offering a guarantee for 12 months or 40,000-50,000 km for the aftermarket.
Q7:When are you going to deliver?
A: Sample: 5-15 business days after payment is confirmed.
Bulk order:15-60 workdays after deposit received…
Q8:What’s your delivery way?
A: By sea, by air, by train, express as your need.
Q9:What are your terms of delivery?
A: EXW, FOB, CFR, CIF, DAP, etc.
Q10:Can you support the sample order?
A: Yes, we can supply the sample if we have parts in stock, but the customer has to pay the sample payment(according to the value of the samples) and the shipping cost.
Q11:What are you going to do if there has a claim for the quality or quantity missing?
A: 1. For quality, during the warranty period, if any claim for it, we shall help the customer to find out what’s the exact problem. Using by mistake, installation problem, or poor quality? Once it’s due to the poor quality, we will arrange the new products to customers.
2. For missing quantities, there have 2 weeks for claiming the missing ones after receiving the goods. We shall help to find out where it is.
Lead Screws and Clamp Style Collars
If you have a lead screw, you’re probably interested in learning about the Acme thread on this type of shaft. You might also be interested in finding out about the Clamp style collars and Ball screw nut. But before you buy a new screw, make sure you understand what the terminology means. Here are some examples of screw shafts:
Acme thread
The standard ACME thread on a screw shaft is made of a metal that is resistant to corrosion and wear. It is used in a variety of applications. An Acme thread is available in a variety of sizes and styles. General purpose Acme threads are not designed to handle external radial loads and are supported by a shaft bearing and linear guide. Their design is intended to minimize the risk of flank wedging, which can cause friction forces and wear. The Centralizing Acme thread standard caters to applications without radial support and allows the thread to come into contact before its flanks are exposed to radial loads.
The ACME thread was first developed in 1894 for machine tools. While the acme lead screw is still the most popular screw in the US, European machines use the Trapezoidal Thread (Metric Acme). The acme thread is a stronger and more resilient alternative to square threads. It is also easier to cut than square threads and can be cut by using a single-point threading die.
Similarly to the internal threads, the metric versions of Acme are similar to their American counterparts. The only difference is that the metric threads are generally wider and are used more frequently in industrial settings. However, the metric-based screw threads are more common than their American counterparts worldwide. In addition, the Acme thread on screw shafts is used most often on external gears. But there is still a small minority of screw shafts that are made with a metric thread.
ACME screws provide a variety of advantages to users, including self-lubrication and reduced wear and tear. They are also ideal for vertical applications, where a reduced frictional force is required. In addition, ACME screws are highly resistant to back-drive and minimize the risk of backlash. Furthermore, they can be easily checked with readily available thread gauges. So, if you’re looking for a quality ACME screw for your next industrial project, look no further than ACME.
Lead screw coatings
The properties of lead screw materials affect their efficiency. These materials have high anti-corrosion, thermal resistance, and self-lubrication properties, which eliminates the need for lubrication. These coating materials include polytetrafluoroethylene (PFE), polyether ether ketone (PEK), and Vespel. Other desirable properties include high tensile strength, corrosion resistance, and rigidity.
The most common materials for lead screws are carbon steel, stainless steel, and aluminum. Lead screw coatings can be PTFE-based to withstand harsh environments and remove oil and grease. In addition to preventing corrosion, lead screw coatings improve the life of polymer parts. Lead screw assembly manufacturers offer a variety of customization options for their lead screw, including custom-molded nuts, thread forms, and nut bodies.
Lead screws are typically measured in rpm, or revolutions per minute. The PV curve represents the inverse relationship between contact surface pressure and sliding velocity. This value is affected by the material used in the construction of the screw, lubrication conditions, and end fixity. The critical speed of lead screws is determined by their length and minor diameter. End fixity refers to the support for the screw and affects its rigidity and critical speed.
The primary purpose of lead screws is to enable smooth movement. To achieve this, lead screws are usually preloaded with axial load, enabling consistent contact between a screw’s filets and nuts. Lead screws are often used in linear motion control systems and feature a large area of sliding contact between male and female threads. Lead screws can be manually operated or mortised and are available in a variety of sizes and materials. The materials used for lead screws include stainless steel and bronze, which are often protected by a PTFE type coating.
These screws are made of various materials, including stainless steel, bronze, and various plastics. They are also made to meet specific requirements for environmental conditions. In addition to lead screws, they can be made of stainless steel, aluminum, and carbon steel. Surface coatings can improve the screw’s corrosion resistance, while making it more wear resistant in tough environments. A screw that is coated with PTFE will maintain its anti-corrosion properties even in tough environments.
Clamp style collars
The screw shaft clamp style collar is a basic machine component, which is attached to the shaft via multiple screws. These collars act as mechanical stops, load bearing faces, or load transfer points. Their simple design makes them easy to install. This article will discuss the pros and cons of this style of collar. Let’s look at what you need to know before choosing a screw shaft clamp style collar. Here are some things to keep in mind.
Clamp-style shaft collars are a versatile mounting option for shafts. They have a recessed screw that fully engages the thread for secure locking. Screw shaft clamp collars come in different styles and can be used in both drive and power transmission applications. Listed below are the main differences between these 2 styles of collars. They are compatible with all types of shafts and are able to handle axial loads of up to 5500 pounds.
Clamp-style shaft collars are designed to prevent the screw from accidentally damaging the shaft when tightened. They can be tightened with a set screw to counteract the initial clamping force and prevent the shaft from coming loose. However, when tightening the screw, you should use a torque wrench. Using a set screw to tighten a screw shaft collar can cause it to warp and reduce the surface area that contacts the shaft.
Another key advantage to Clamp-style shaft collars is that they are easy to install. Clamp-style collars are available in one-piece and two-piece designs. These collars lock around the shaft and are easy to remove and install. They are ideal for virtually any shaft and can be installed without removing any components. This type of collar is also recommended for those who work on machines with sensitive components. However, be aware that the higher the OD, the more difficult it is to install and remove the collar.
Screw shaft clamp style collars are usually one-piece. A two-piece collar is easier to install than a one-piece one. The two-piece collars provide a more effective clamping force, as they use the full seating torque. Two-piece collars have the added benefit of being easy to install because they require no tools to install. You can disassemble one-piece collars before installing a two-piece collar.
Ball screw nut
The proper installation of a ball screw nut requires that the nut be installed on the center of the screw shaft. The return tubes of the ball nut must be oriented upward so that the ball nut will not overtravel. The adjusting nut must be tightened against a spacer or spring washer, then the nut is placed on the screw shaft. The nut should be rotated several times in both directions to ensure that it is centered.
Ball screw nuts are typically manufactured with a wide range of preloads. Large preloads are used to increase the rigidity of a ball screw assembly and prevent backlash, the lost motion caused by a clearance between the ball and nut. Using a large amount of preload can lead to excessive heat generation. The most common preload for ball screw nuts is 1 to 3%. This is usually more than enough to prevent backlash, but a higher preload will increase torque requirements.
The diameter of a ball screw is measured from its center, called the ball circle diameter. This diameter represents the distance a ball will travel during 1 rotation of the screw shaft. A smaller diameter means that there are fewer balls to carry the load. Larger leads mean longer travels per revolution and higher speeds. However, this type of screw cannot carry a greater load capacity. Increasing the length of the ball nut is not practical, due to manufacturing constraints.
The most important component of a ball screw is a ball bearing. This prevents excessive friction between the ball and the nut, which is common in lead-screw and nut combinations. Some ball screws feature preloaded balls, which avoid “wiggle” between the nut and the ball. This is particularly desirable in applications with rapidly changing loads. When this is not possible, the ball screw will experience significant backlash.
A ball screw nut can be either single or multiple circuits. Single or multiple-circuit ball nuts can be configured with 1 or 2 independent closed paths. Multi-circuit ball nuts have 2 or more circuits, making them more suitable for heavier loads. Depending on the application, a ball screw nut can be used for small clearance assemblies and compact sizes. In some cases, end caps and deflectors may be used to feed the balls back to their original position.
China Custom 050148b 1603195 90510544 90447280 328106 Auto Wheel Bearing Kit for Car with Good Quality with Free Design Custom
Product Description
Name: | 050148B 165715 9571544 90447280 328106 Auto Wheel Bearing Kit for Car with Good Quality |
Wheel bearing kit | |
Position: | wheel hub front/rear axle |
Weight: | 0.5 KG |
Specifications: | bearing size:35*72*33mm |
Material: | Chrome steel/GCR-15 |
Technology: | Hot forging |
CAGE: | Metal/TN Nylon/steel |
SEAL: | Open/2RS/ZZ |
Rolling body: | Steel ball/roller |
ABS: | With |
Quality: | Top grade |
Brands: | DHXB, OEM |
Origin: | China |
Introduction to WHEEL BEARING KITS
We supply wheel bearings to most OE car manufacturers in the world and has developed bearings for automotive applications to complete its range of kits.
· Product range of over 5.2
ZheJiang Huaxu Bearing Co.,Ltd
Our factory specialize wheel hub bearing, wheel bearing kit, clutch bearing, taper roller bearing, truck bearing, wheel hub bearing in high quality.
Our bearings have large loading capacity and long lifetime, and widely fit in different vehicles.
wheel bearings and kits to vehicles like LADA, TOYOTA, HONDA,, AUDI,Chevrolet, HYUNDAI,FIAT, FORD and so on.
Truck bearings applied to , MAN, BENZ, DAF, SAF and so on.
And we can produce bearings which can meet your multifarious demands.
For example, wheel bearing, taper roller bearing, clutch release bearing, ball bearing, truck bearing ect.
We can provide brands like, TIMKEN, NSK, KOYO, NTN, NACHI, GMB, BW, GM, HYUNDAI ect.
Q:What’s your after-sales service and warranty?
A: We promise to bear the following responsibilities when defective products were found:
1.12 months warranty from the first day of receiving goods;
2. Replacements would be sent with goods of your next order;
3. Refund for defective products if customers require.
Q:Do you accept ODM&OEM orders?
A: Yes, we provide ODM&OEM services to worldwide customers, we also customize OEM box and packing as your requirements.
Q:What’s the MOQ?
A: MOQ is 10pcs for standardized products; for customized products, MOQ should be negotiated in advance. There is no MOQ for sample orders.
Q:How long is the lead time?
A: The lead time for sample orders is 3-5 days, for bulk orders is 5-15 days.
Q:Do you offer free samples?
A: Yes we offer free samples to distributors and wholesalers, however customers should bear freight. We DO NOT offer free samples to end users.
Q:How to place order?
A: 1. Email us the model, brand and quantity,shipping way of bearings and we will quote our best price for you;
2. Proforma Invoice made and sent to you as the price agreed by both parts;
3. Deposit Payment after confirming the PI and we arrange production;
4. Balance paid before shipment or after copy of Bill of Loading.
Types of Screw Shafts
Screw shafts come in various types and sizes. These types include fully threaded, Lead, and Acme screws. Let’s explore these types in more detail. What type of screw shaft do you need? Which 1 is the best choice for your project? Here are some tips to choose the right screw:
Machined screw shaft
The screw shaft is a basic piece of machinery, but it can be further customized depending on the needs of the customer. Its features include high-precision threads and ridges. Machined screw shafts are generally manufactured using high-precision CNC machines or lathes. The types of screw shafts available vary in shape, size, and material. Different materials are suitable for different applications. This article will provide you with some examples of different types of screw shafts.
Ball screws are used for a variety of applications, including mounting machines, liquid crystal devices, measuring devices, and food and medical equipment. Various shapes are available, including miniature ball screws and nut brackets. They are also available without keyway. These components form a high-accuracy feed mechanism. Machined screw shafts are also available with various types of threaded ends for ease of assembly. The screw shaft is an integral part of linear motion systems.
When you need a machined screw shaft, you need to know the size of the threads. For smaller machine screws, you will need a mating part. For smaller screw sizes, the numbers will be denominated as industry Numeric Sizes. These denominations are not metric, but rather in mm, and they may not have a threads-per-inch designation. Similarly, larger machine screws will usually have threads that have a higher pitch than those with a lower pitch.
Another important feature of machine screws is that they have a thread on the entire shaft, unlike their normal counterparts. These machine screws have finer threads and are intended to be screwed into existing tapped holes using a nut. This means that these screws are generally stronger than other fasteners. They are usually used to hold together electronic components, industrial equipment, and engines. In addition to this, machine screws are usually made of a variety of materials.
Acme screw
An Acme screw is the most common type of threaded shaft available. It is available in a variety of materials including stainless steel and carbon steel. In many applications, it is used for large plates in crushing processes. ACME screws are self-locking and are ideal for applications requiring high clamping force and low friction. They also feature a variety of standard thread forms, including knurling and rolled worms.
Acme screws are available in a wide range of sizes, from 1/8″ to 6″. The diameter is measured from the outside of the screw to the bottom of the thread. The pitch is equal to the lead in a single start screw. The lead is equal to the pitch plus the number of starts. A screw of either type has a standard pitch and a lead. Acme screws are manufactured to be accurate and durable. They are also widely available in a wide range of materials and can be customized to fit your needs.
Another type of Acme screw is the ball screw. These have no back drive and are widely used in many applications. Aside from being lightweight, they are also able to move at faster speeds. A ball screw is similar to an Acme screw, but has a different shape. A ball screw is usually longer than an Acme screw. The ball screw is used for applications that require high linear speeds. An Acme screw is a common choice for many industries.
There are many factors that affect the speed and resolution of linear motion systems. For example, the nut position and the distance the screw travels can all affect the resolution. The total length of travel, the speed, and the duty cycle are all important. The lead size will affect the maximum linear speed and force output. If the screw is long, the greater the lead size, the higher the resolution. If the lead length is short, this may not be the most efficient option.
Lead screw
A lead screw is a threaded mechanical device. A lead screw consists of a cylindrical shaft, which includes a shallow thread portion and a tightly wound spring wire. This spring wire forms smooth, hard-spaced thread convolutions and provides wear-resistant engagement with the nut member. The wire’s leading and trailing ends are anchored to the shaft by means appropriate to the shaft’s composition. The screw is preferably made of stainless steel.
When selecting a lead screw, 1 should first determine its critical speed. The critical speed is the maximum rotations per minute based on the natural frequency of the screw. Excessive backlash will damage the lead screw. The maximum number of revolutions per minute depends on the screw’s minor diameter, length, assembly alignment, and end fixity. Ideally, the critical speed is 80% of its evaluated critical speed. A critical speed is not exceeded because excessive backlash would damage the lead screw and may be detrimental to the screw’s performance.
The PV curve defines the safe operating limits of a lead screw. This relationship describes the inverse relationship between contact surface pressure and sliding velocity. As the PV value increases, a lower rotation speed is required for heavier axial loads. Moreover, PV is affected by material and lubrication conditions. Besides, end fixity, which refers to the way the lead screw is supported, also affects its critical speed. Fixed-fixed and free end fixity are both possible.
Lead screws are widely used in industries and everyday appliances. In fact, they are used in robotics, lifting equipment, and industrial machinery. High-precision lead screws are widely used in the fields of engraving, fluid handling, data storage, and rapid prototyping. Moreover, they are also used in 3D printing and rapid prototyping. Lastly, lead screws are used in a wide range of applications, from measuring to assembly.
Fully threaded screw
A fully threaded screw shaft can be found in many applications. Threading is an important feature of screw systems and components. Screws with threaded shafts are often used to fix pieces of machinery together. Having fully threaded screw shafts ensures that screws can be installed without removing the nut or shaft. There are 2 major types of screw threads: coarse and fine. When it comes to coarse threads, UTS is the most common type, followed by BSP.
In the 1840s, a British engineer named Joseph Whitworth created a design that was widely used for screw threads. This design later became the British Standard Whitworth. This standard was used for screw threads in the United States during the 1840s and 1860s. But as screw threads evolved and international standards were established, this system remained largely unaltered. A new design proposed in 1864 by William Sellers improved upon Whitworth’s screw threads and simplified the pitch and surface finish.
Another reason for using fully threaded screws is their ability to reduce heat. When screw shafts are partially threaded, the bone grows up to the screw shaft and causes the cavity to be too narrow to remove it. Consequently, the screw is not capable of backing out. Therefore, fully threaded screws are the preferred choice for inter-fragmentary compression in children’s fractures. However, surgeons should know the potential complication when removing metalwork.
The full thread depth of a fully threaded screw is the distance at which a male thread can freely thread into the shaft. This dimension is typically 1 millimeter shy of the total depth of the drilled hole. This provides space for tap lead and chips. The full-thread depth also makes fully threaded screws ideal for axially-loaded connections. It is also suitable for retrofitting applications. For example, fully threaded screws are commonly used to connect 2 elements.
Ball screw
The basic static load rating of a ball screw is determined by the product of the maximum axial static load and the safety factor “s0”. This factor is determined by past experience in similar applications and should be selected according to the design requirements of the application. The basic static load rating is a good guideline for selecting a ball screw. There are several advantages to using a ball screw for a particular application. The following are some of the most common factors to consider when selecting a ball screw.
The critical speed limit of a ball screw is dependent on several factors. First of all, the critical speed depends on the mass, length and diameter of the shaft. Second, the deflection of the shaft and the type of end bearings determine the critical speed. Finally, the unsupported length is determined by the distance between the ball nut and end screw, which is also the distance between bearings. Generally, a ball screw with a diameter greater than 1.2 mm has a critical speed limit of 200 rpm.
The first step in manufacturing a high-quality ball screw is the choice of the right steel. While the steel used for manufacturing a ball screw has many advantages, its inherent quality is often compromised by microscopic inclusions. These microscopic inclusions may eventually lead to crack propagation, surface fatigue, and other problems. Fortunately, the technology used in steel production has advanced, making it possible to reduce the inclusion size to a minimum. However, higher-quality steels can be expensive. The best material for a ball screw is vacuum-degassed pure alloy steel.
The lead of a ball screw shaft is also an important factor to consider. The lead is the linear distance between the ball and the screw shaft. The lead can increase the amount of space between the balls and the screws. In turn, the lead increases the speed of a screw. If the lead of a ball screw is increased, it may increase its accuracy. If not, the lead of a ball screw can be improved through preloading, lubrication, and better mounting accuracy.