Product Description
Solution Description
This Shaft, Rear Axle, Rh Toyota, 42311-0K070 matches the types, which are indicated under.
Compatibility versions: HILUX/4RUNNER TRUCK
Human body/chassis
KUN10 KUN15 LAN15 TGN10 TGN15 TGN16
Simply because there are also a lot of versions, the desk can’t show them all. Please consult online consumer support.Thank you
NO. |
Oem |
Modle | Size/mm | Splines | Holes |
1 | 42311-263-01 | patriot Jeep | 874 | ten | 10+two |
26 | 42311-36210 | COASTER | 770/776 | 34 | 6+2+2 |
27 | 42311-37140 | Hino 300 | 865 | 37 | 10 |
Organization Profile
FAQ
Q:Can you do OEM and give samples firstly?
A:Of course,OEM and ODM are welcomed ,and with shares ,samples can be shipped with 3 HangZhou as you need.
Q:What is the MOQ?payment term? and shipping and delivery time
A:For standard merchandise, MOQ: 100PCS every product
Once we get payment, we will ship your order inside 20 operating days.
The typical supply time is 20days, dependent on which country you are in.
Q:In which are you? Can we visit your factory?
A:Our manufacturing facility is found in HangZhou, ZheJiang , China.
lt is shut to HangZhou Airport, and the targeted traffic at the west exit of HangZhou Sanquan Expressway is quite hassle-free.
All workers of the firm sincerely welcome domestic and foreign merchants to check out our firm for guidance and enterprise negotiation.
US $10-999 / Piece | |
100 Pieces (Min. Order) |
###
After-sales Service: | 1year |
---|---|
Condition: | New |
Axle Number: | 1 |
Application: | Truck |
Certification: | ISO |
Material: | 40cr Carbon Steel |
###
Samples: |
US$ 50/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
NO. |
Oem |
Modle | Length/mm | Splines | Holes |
1 | 42311-26300 | TOYOTA HAICE KDH211 RH | 825 |
30 |
6+1 |
2 | 42311-26290 | TOYOTA HAICE KDH20# RH | 733 | 30 | 6+1 |
3 | 42311-26301 | TOYOTA HAICE 2005 Narrow 1695 DIESEL | 825 | 30 | 6+1 |
4 | 42311-0K040 | TOYOTA HILUX 7 Vigo 2005-2015 KUN26 | 764 | 30 | 6+1 |
5 | 42311-0K030 | TOYOTA HILUX KUN25 RH | 764 | 30 | 6+1 |
6 | 42311-0K070 | TOYOTA HILUX KUN16 RH/HILUX DLX 5LE 2005-2013 | 764 | 30 | 5+1 |
7 | 42311-0K090 | TOYOTA HILUX KUN26 LHD RH | 764 | 30 | 6+1 |
8 | 42311-35330 | TOYOTA HILUX/4RUNNER TRUCK | 663 | 30 | 6+1 |
9 | 42311-35140 | TOYOTA HILUX 4 1983-1988/HILUX 5 1988-1997 | 663 | 30 | 6+1 |
10 | 42311-KK040 | 770 | 32 | 6+2 | |
11 | 42311-60240 | TOYOTA Landcruiser | 783 | 30 | 6+2 |
12 | 42311-60242 | TOYOTA Landcruiser | 783 | 30 | 6+2 |
13 | 42312-60070 | TOYOTA Landcruiser | 824 | 30 | 6+1 |
14 | 3W1Z-4234-A | Ford | 860 | 28 | 5 |
15 | 6W1Z-4234-A | Ford | 860 | 31 | 5 |
16 | F8AZ-4234-A | Ford | 809 | 28 | 5 |
17 | 42311-14990 | 990 | 39 | 10 | |
18 |
MB308901 | MITSUBISHI | 770 | 18 | 8+2 |
19 | MB308903 | MITSUBISHI | 800 | 18 | 8+2 |
20 | MC881679 | MITSUBISHI | 950 | 20 | 8 |
21 | MK499638/MC864169 | MITSUBISHI/Canter lntercooler FE74/75,Colt Diesel FE349/120PS | 802/805 | 18 | 8+2 |
22 | MK499638-M/MC864169-M | MITSUBISHI/Canter lntercooler FE74/75,Colt Diesel FE349/120PS | 805 | 18 | 8+2 |
23 | ME508085 | Canter lntercooler FE75 SHDX/H-Gear | 805 | 18 | 8+2 |
24 | 42311-0W030 /42311-LAA30 | TOYOTA | 774.5 | 37 | 8+2+2 |
25 | 3162-2403070-01 | patriot Jeep | 874 | 10 | 10+2 |
26 | 42311-36210 | COASTER | 770/776 | 34 | 6+2+2 |
27 | 42311-37140 | Hino 300 | 865 | 37 | 10 |
US $10-999 / Piece | |
100 Pieces (Min. Order) |
###
After-sales Service: | 1year |
---|---|
Condition: | New |
Axle Number: | 1 |
Application: | Truck |
Certification: | ISO |
Material: | 40cr Carbon Steel |
###
Samples: |
US$ 50/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
NO. |
Oem |
Modle | Length/mm | Splines | Holes |
1 | 42311-26300 | TOYOTA HAICE KDH211 RH | 825 |
30 |
6+1 |
2 | 42311-26290 | TOYOTA HAICE KDH20# RH | 733 | 30 | 6+1 |
3 | 42311-26301 | TOYOTA HAICE 2005 Narrow 1695 DIESEL | 825 | 30 | 6+1 |
4 | 42311-0K040 | TOYOTA HILUX 7 Vigo 2005-2015 KUN26 | 764 | 30 | 6+1 |
5 | 42311-0K030 | TOYOTA HILUX KUN25 RH | 764 | 30 | 6+1 |
6 | 42311-0K070 | TOYOTA HILUX KUN16 RH/HILUX DLX 5LE 2005-2013 | 764 | 30 | 5+1 |
7 | 42311-0K090 | TOYOTA HILUX KUN26 LHD RH | 764 | 30 | 6+1 |
8 | 42311-35330 | TOYOTA HILUX/4RUNNER TRUCK | 663 | 30 | 6+1 |
9 | 42311-35140 | TOYOTA HILUX 4 1983-1988/HILUX 5 1988-1997 | 663 | 30 | 6+1 |
10 | 42311-KK040 | 770 | 32 | 6+2 | |
11 | 42311-60240 | TOYOTA Landcruiser | 783 | 30 | 6+2 |
12 | 42311-60242 | TOYOTA Landcruiser | 783 | 30 | 6+2 |
13 | 42312-60070 | TOYOTA Landcruiser | 824 | 30 | 6+1 |
14 | 3W1Z-4234-A | Ford | 860 | 28 | 5 |
15 | 6W1Z-4234-A | Ford | 860 | 31 | 5 |
16 | F8AZ-4234-A | Ford | 809 | 28 | 5 |
17 | 42311-14990 | 990 | 39 | 10 | |
18 |
MB308901 | MITSUBISHI | 770 | 18 | 8+2 |
19 | MB308903 | MITSUBISHI | 800 | 18 | 8+2 |
20 | MC881679 | MITSUBISHI | 950 | 20 | 8 |
21 | MK499638/MC864169 | MITSUBISHI/Canter lntercooler FE74/75,Colt Diesel FE349/120PS | 802/805 | 18 | 8+2 |
22 | MK499638-M/MC864169-M | MITSUBISHI/Canter lntercooler FE74/75,Colt Diesel FE349/120PS | 805 | 18 | 8+2 |
23 | ME508085 | Canter lntercooler FE75 SHDX/H-Gear | 805 | 18 | 8+2 |
24 | 42311-0W030 /42311-LAA30 | TOYOTA | 774.5 | 37 | 8+2+2 |
25 | 3162-2403070-01 | patriot Jeep | 874 | 10 | 10+2 |
26 | 42311-36210 | COASTER | 770/776 | 34 | 6+2+2 |
27 | 42311-37140 | Hino 300 | 865 | 37 | 10 |
An Axle is a Simple Machine For Amplifying Force
An axle is the central shaft that connects the drive wheels of a vehicle. It transmits power from the engine to the wheels and absorbs braking and acceleration forces. It may also contain bearings. Learn more about the important functions of the axle in your vehicle. Its simple design makes it an efficient machine for amplifying force.
An axle is a rod or shaft that connects to the drive wheels
An axle is a rod or shaft that is fixed to the drive wheels of a vehicle. It provides support and rotates with the wheels. Generally, a vehicle has two axles. However, larger vehicles can have more. The type of axle used will depend on how much torque and speed the wheels need to travel.
Drive axles are crucial to the operation of a car. They transfer power from the engine to the wheels, so they must be strong and durable. They also need to be able to support the weight of the vehicle and resist accelerated forces. The drive axle is usually connected to a driveshaft, which extends upward into the transmission and connects with the engine.
There are two main types of axles: front wheel drive (FWD) and rear wheel drive (RWD). The former type is common in passenger vehicles, while the latter type is more common for trucks and cars. The rear wheel drive (RWD) axle connects to the drive wheels, while the front-wheel drive (FWD) axle transfers power from the transaxle differential to the wheels.
Modern drive axles consist of short rods with a flexible rubber boot covering the CV joint. The rubber boot helps to prevent dirt and grease from getting into the CV joint. The increased complexity of the drive axle increases the risk that something goes wrong with it. However, this increases the car’s traction, ride quality, and handling.
A car’s axles are designed by engineers to be extremely strong. They must be able to withstand thousands of pounds of weight, while operating under high levels of friction. But no drive axle is invincible; they will break if the vehicle is overloaded or too heavy.
The rear axle is connected to the engine and rotates with the wheels. The front axle helps with steering and absorbs road shocks. Typically, this part is made of carbon steel and nickel steel.
It absorbs braking and acceleration forces
The Axle is an important part of a vehicle’s suspension. It is responsible for absorbing braking and acceleration forces. Axle roll centres are located on the transversal vertical plane, through the center of each wheel. This is the point at which lateral force applied to the sprung mass is transferred to the unsprung mass, a process known as transfer of momentum. This force coupling point is also known as the Neutral Roll Axis.
An axle’s role in a vehicle goes beyond absorbing braking and acceleration forces. It also serves as a weight transfer device, reducing the stress on the joints of a vehicle. Its design has evolved over time to meet a variety of requirements. It must be durable and able to absorb braking and acceleration forces, while providing the right amount of structural support.
A potential diagram can be used to benchmark tyre performance. The data entered can include suspension geometry and load distributions. The lateral force potential of a tyre is calculated for each individual tyre in an axle, and the values obtained for a constant steer angle are also included.
Optimal energy recovery is crucial for absorbing braking forces and meeting the total braking force required for a given deceleration. Figure 11 shows the braking forces for the front and rear axles over a certain range when j/g = m. The thick solid line ab represents this range.
In addition to braking and acceleration forces, an axle’s lateral force capacity is limited by lateral load transfer. If one axle fails to absorb lateral forces, it might break loose and skid before the other. This can lead to understeer and oversteer. This is why it is not a good idea to put unsprung weight on a vehicle’s axle.
It transmits power from the engine to the wheels
The axle is an integral part of a vehicle’s drive system. It transmits power from the engine to the wheels. Different types of axles have different roles in transmission of power from the engine to the wheels. The drive shaft is the main component of an axle, connecting the engine and the wheels.
A vehicle’s axle transmits power from the engine to the rear wheels. The power is transferred through the gears to move the car forward. The inner wheel of a bicycle pedal powers the back wheel, while the outer wheel moves at a different speed. Similarly, the power from the engine is transmitted to the wheels by a car’s crankshaft and driveshaft.
The type of axle you choose depends on the size of the vehicle and its purpose. Standard axles are suitable for most vehicles, while customized axles are best suited for high-performance vehicles. Customized axles give you more control over the wheel speed and torque. It’s important to know about the types and sizes of axles to choose the right one for your vehicle.
A differential is another vital component of the drivetrain. It allows the power from the engine to reach both wheels, which allows the vehicle to accelerate and decelerate. A differential also compensates for the difference in tyre speeds on curved roads. By using a differential, you can increase the speed of the wheels and improve your car’s handling.
The differential between the front and rear axles is called a bevel ring gear. Its input shaft is supported by a ball race mounted in the axle casing. The other part of the differential is called the input helical gear. The two sun gears are connected by cross-pins.
It is a simple machine for amplifying force
A simple machine is one that increases the output of force without altering the input force. For example, a lever increases force but does not create new energy. Therefore, it is necessary to balance the work input and output. It is important to keep in mind that friction can reduce energy.
Using a simple machine, you can perform various tasks. For example, you can use it to cut and pry apart objects. This type of machine involves a wheel and an axle, which have a smaller radius than the wedge. The force applied by the wheel pushes the two pieces apart.
Another simple machine that amplifies force is a gearbox. The earliest gearboxes were used to lift buckets or weights from wells. The large gear is attached to a smaller one by a hinge. The smaller gear increases the force of the larger one, allowing the small gear to lift much larger loads.
A wheel and axle is a simple machine that uses mechanical advantage to change force. A wheel is a circular disk, and an axle is a rod through the center. The mechanical advantage is a result of the combination of torque and angular momentum to work against the force of gravity. In addition, this machine is closely related to gears.
Simple machines are a great way to compare the magnitude of forces, as they use similar mechanisms. One of the oldest examples of a simple machine is a wheel and axle. A wheel is fixed to an axle, and the axle is fixed to a vertical surface. The force generated by the wheel will be proportional to the distance between the two spools.
Another simple machine that amplifies force is a lever. A lever uses a beam or a rigid rod that can pivot on its fulcrum. It is an effective tool for shifting heavy loads, and also for applying force. It also reduces the friction of a vehicle while preserving its momentum.
editor by czh 2022-12-20