Product Description
Product Information
Product name | Rear axle |
OEM number | 42311-26290 |
Material | Steel |
Quality | High performance |
Shipment term | By Air,sea and express.. |
Payment method | TT,Paypal,Western Union, Via Made-in-China website |
Picture of product
Our advantage
1.Many years professional manufacturing supplier experience.
2.Our products range is well equipped
3. Factory price
4. Customized services
5.Sample available for quality examination
6. Small order welcome
Shipment and Payment
1: Usually we ship your order by sea or by air…
2: We do our best to ship your order within 1 week after receiving your payment
3: We’ll tell you the tracking number once your order has been sent.
4: We accept T/T Bank transfer, L/C, Western Union, Paypal.
Q & A
- How Can I Get Your catalogue?
A: Send An Enquiry To Us And Tell Us U Need Our catalogue, Our Sales Will Reply U Within 12 Hours With product catalogueQ2. Can I Get An Sample To Check Quality Before Mass Order?
A: Yes, You Can. Welcome To Place Sample Order To Check Our Quality. I Do Believe Our High Quality Products Will Bring More Orders For You From Your Clients!Q3. Any Guarantee For Your Products?
A: Our Company’s Culture Is”Quality Is Our Culture!”All Of Our Products With 12Months FREE GUARANTEE,Never Need To Worry About The After-Sale Service. We Will Always Be Here To Support Your Business!Q4. How About Your Delivery Time?
A: Generally, It Will Take 3 To 30 Days After Receiving Your Advance Payment. The Specific Delivery Time Depends
On The Items And The Quantity Of Your Order.Q5.Do You Test All Your Goods Before Delivery?
A: Yes, We Have 100 Q% Test Before Delivery.Q6. How Do You Make Our Business Long-Term And Good Relationship?
1. We Keep Good Quality And Competitive Price To Ensure Our Customers Benefit ;
2. We Respect Every Customer As Our Friend And We Sincerely Do Business And Make Friends With Them, No Matter Where They Come From.
After-sales Service: | Good |
---|---|
Condition: | New |
Color: | Black |
Certification: | ISO |
Type: | Rear Axle Shaft |
Application Brand: | Toyota |
Samples: |
US$ 35/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What are the key differences between live axles and dead axles in vehicle design?
In vehicle design, live axles and dead axles are two different types of axle configurations with distinct characteristics and functions. Here’s a detailed explanation of the key differences between live axles and dead axles:
Live Axles:
A live axle, also known as a solid axle or beam axle, is a type of axle where the wheels on both ends of the axle are connected and rotate together as a single unit. Here are the key features and characteristics of live axles:
- Connected Wheel Movement: In a live axle configuration, the wheels on both ends of the axle are linked together, meaning that any movement or forces applied to one wheel will directly affect the other wheel. This connection provides equal power distribution and torque to both wheels, making it suitable for off-road and heavy-duty applications where maximum traction is required.
- Simple Design: Live axles have a relatively simple design, consisting of a solid beam that connects the wheels. This simplicity makes them durable and capable of withstanding heavy loads and rough terrains.
- Weight and Cost: Live axles tend to be heavier and bulkier compared to other axle configurations, which can impact the overall weight and fuel efficiency of the vehicle. Additionally, the manufacturing and maintenance costs of live axles can be lower due to their simpler design.
- Suspension: In most cases, live axles are used in conjunction with leaf spring or coil spring suspensions. The axle is typically mounted to the vehicle’s chassis using leaf springs or control arms, allowing the axle to move vertically to absorb bumps and provide a smoother ride.
- Off-road Capability: Live axles are commonly used in off-road vehicles, trucks, and heavy-duty applications due to their robustness, durability, and ability to deliver power to both wheels simultaneously, enhancing traction and off-road performance.
Dead Axles:
A dead axle, also known as a dummy axle or non-driven axle, is a type of axle that does not transmit power to the wheels. It is primarily used to provide support and stability to the vehicle. Here are the key features and characteristics of dead axles:
- Independent Wheel Movement: In a dead axle configuration, each wheel operates independently, meaning that the movement or forces applied to one wheel will not affect the other wheel. Each wheel is responsible for its own power delivery and traction.
- Weight Distribution: Dead axles are often used to distribute the weight of the vehicle more evenly, especially in cases where heavy loads need to be carried. By adding an extra axle without driving capability, the weight can be distributed over a larger area, reducing the load on other axles and improving stability.
- Steering: Dead axles are commonly used as front axles in vehicles with rear-wheel drive configurations. They provide support for the front wheels and allow for steering control. The steering is typically achieved through a separate mechanism, such as a steering linkage or a steering gear.
- Reduced Complexity: Dead axles are simpler in design compared to live axles since they do not have the additional components required for power transmission. This simplicity can lead to lower manufacturing and maintenance costs.
- Efficiency and Maneuverability: Dead axles are often used in vehicles where power delivery to all wheels is not necessary, such as trailers, certain types of buses, and some light-duty vehicles. By eliminating the power transmission components, these vehicles can achieve better fuel efficiency and improved maneuverability.
It’s important to note that the choice between live axles and dead axles depends on the specific application, vehicle type, and desired performance characteristics. Vehicle manufacturers consider factors such as load capacity, traction requirements, off-road capability, cost, and fuel efficiency when determining the appropriate axle configuration for a particular vehicle model.
Are there specific maintenance tips to extend the lifespan of my vehicle’s axles?
Maintaining the axles of your vehicle is crucial for ensuring their longevity, performance, and overall safety. Here are some specific maintenance tips to extend the lifespan of your vehicle’s axles:
- Regular Inspection:
- Lubrication:
- Seal Inspection and Replacement:
- Proper Loading and Towing:
- Driving Techniques:
- Regular Wheel Alignment:
- Proper Tire Inflation:
- Service Intervals:
Perform regular visual inspections of the axles to check for any signs of damage, leaks, or excessive wear. Look for cracks, bends, or rust on the axle housing, and inspect the axle shafts, seals, and boots. Early detection of issues can help prevent further damage and costly repairs.
Follow the manufacturer’s recommendations for axle lubrication. Proper lubrication helps reduce friction and wear on the axle components. Regularly check the axle’s lubricant level and quality, and replace it as necessary. Use the recommended lubricant type and viscosity for your specific axle.
Check the axle seals for any signs of leaks, such as fluid accumulation around the axle ends. Leaking seals can allow contaminants to enter the axle assembly, leading to premature wear and damage. Replace worn or damaged seals promptly to maintain proper lubrication and prevent contamination.
Ensure that you do not exceed the weight capacity of your vehicle’s axles. Overloading or towing beyond the recommended limits can put excessive stress on the axles, leading to premature wear or failure. Be mindful of the payload and towing capacity specified by the vehicle manufacturer.
Adopt proper driving techniques to minimize stress on the axles. Avoid sudden acceleration, aggressive cornering, and harsh braking, as these actions can subject the axles to excessive forces. Additionally, be cautious when driving over rough terrain or obstacles to prevent impacts that could damage the axles.
Maintain proper wheel alignment to prevent excessive strain on the axles. Misaligned wheels can put uneven loads on the axles, leading to accelerated wear. Regularly check and adjust the wheel alignment as per the manufacturer’s recommendations.
Ensure that your vehicle’s tires are properly inflated according to the recommended tire pressure. Underinflated or overinflated tires can affect the load distribution on the axles and increase the risk of axle damage. Regularly check and maintain the correct tire pressure.
Follow the recommended service intervals for your vehicle, which may include axle inspections, lubricant changes, and other maintenance tasks. Adhering to these intervals ensures that the axles are properly maintained and any potential issues are addressed in a timely manner.
It’s important to consult your vehicle’s owner’s manual for specific maintenance guidelines and intervals provided by the manufacturer. Additionally, if you notice any unusual noises, vibrations, or handling issues related to the axles, it is advisable to have your vehicle inspected by a qualified mechanic to identify and address any potential axle problems promptly.
Can you explain the importance of axle alignment for vehicle stability and handling?
Axle alignment plays a crucial role in ensuring vehicle stability and handling characteristics. Proper alignment of the axles is essential for maintaining optimal tire contact with the road surface, minimizing tire wear, maximizing traction, and promoting safe and predictable handling. Here are the key reasons why axle alignment is important:
- Tire Wear and Longevity:
- Optimal Traction:
- Steering Response and Stability:
- Reduced Rolling Resistance:
- Vehicle Safety:
Correct axle alignment helps distribute the vehicle’s weight evenly across all four tires. When the axles are properly aligned, the tires wear evenly, reducing the risk of premature tire wear and extending their lifespan. Misaligned axles can cause uneven tire wear patterns, such as excessive wear on the inner or outer edges of the tires, leading to the need for premature tire replacement.
Proper axle alignment ensures that the tires maintain optimal contact with the road surface. When the axles are aligned correctly, the tires can evenly distribute the driving forces, maximizing traction and grip. This is particularly important during acceleration, braking, and cornering, as proper alignment helps prevent tire slippage and improves overall vehicle stability.
Axle alignment directly affects steering response and stability. When the axles are properly aligned, the vehicle responds predictably to driver inputs, providing precise and accurate steering control. Misaligned axles can lead to steering inconsistencies, such as pulling to one side or requiring constant correction, compromising vehicle stability and handling.
Proper axle alignment helps reduce rolling resistance, which is the force required to move the vehicle forward. When the axles are aligned correctly, the tires roll smoothly and effortlessly, minimizing energy loss due to friction. This can contribute to improved fuel efficiency and reduced operating costs.
Correct axle alignment is crucial for ensuring vehicle safety. Misaligned axles can affect the vehicle’s stability, especially during emergency maneuvers or sudden lane changes. Proper alignment helps maintain the intended handling characteristics of the vehicle, reducing the risk of loss of control and improving overall safety.
To achieve proper axle alignment, several key parameters are considered, including camber, toe, and caster angles. Camber refers to the vertical tilt of the wheel when viewed from the front, toe refers to the angle of the wheels in relation to each other when viewed from above, and caster refers to the angle of the steering axis in relation to vertical when viewed from the side. These alignment angles are adjusted to meet the vehicle manufacturer’s specifications and ensure optimal performance.
It’s important to note that factors such as road conditions, driving habits, and vehicle modifications can affect axle alignment over time. Regular maintenance and periodic alignment checks are recommended to ensure that the axles remain properly aligned, promoting vehicle stability, handling, and safety.
editor by CX 2023-11-16
China Auto Transmission Car Rear Front Cv Axle Shaft Drive Shaft for Honda Civic City Crv Cr-v Fit Odyssey Vezel Accord Crosstour 2021 axle arm
Yr: 2571-2016, 2014-2016, 2571-, 2003-2005, 2014-2015, 2017-, 2016-2016, 1998-2002, 2014-2016, 1994-1997, 2008-2013, 2015-2015, 2016-, 2016-2016, 2017-2571, 2009-2011, 2012-2014, 2006-2571, 2017-, 2015-2016, 2014-2016, 2018-2019, 2571-, 2015-2017, 2017-, 2005-2006, 2002-2006, 2007-2009, 2018-, 2012-2016, 2015-2016, 2014-2016, 2013-2571, 2005-2008, 2016-, 2017-, 2008-2013, 2002-2004, 2013-, 2017-2019, 2012-2016, 2013-2015, 2009-, 2016-2019, 1.5KW ESTUN ProNet Series AC Servo Technique 7.16N.m 5A 2000rmin Servodrive servo motor kit 2014-2016, 2012-2015, 2008-, 2015-, 2017-2019, 2015-2571, 2009-2012, 2571-, 2013-, 2013-2571, 2013-2017, 2003-2004, 2007-2008, 2005-2007, 2005-, 2009-2014, 1993-1998, 1997-2005, 2001-2006, 2012-, 2005-, 2016-, 2012-, 2006-, 2003-2008, 2013-, 1993-1998, 2008-, 1997-2003, 2002-2008, 2012-, 2011-, 2014-, 1995-2002, 2008-, 2015-, 2007-, 2009-2015, 2007-2011, 2016-, 2003-, 2007-2011, 2008-2012, 2012-, Radial insert ball bearings GVK109-211-KTT-B-AS2V deep groove ball bearings 2571-, 2019-, 2571-
Design: CR-V, ACCORD VI Aerodeck (CF), CR-V IV (RM_), ACCORD IX Saloon (CR), CR-V III (RE_), Town Saloon (GM2, GM3), CIVIC IX (FK), Jazz, Fit ARIA Saloon (GD_), ACCORD VII (CM), CR-V V (RW_), ACCORD V Aerodeck (CE), HONDAFIT, Town, ACCORD VIII (CP), CIVIC X Hatchback (FC_, FK), CIVIC VIII Hatchback (FN, FK), STREAM, Fit V (GR_), JAZZ V (GR_), CIVIC IX Saloon (FB, FG), Fit IV (GK_), Civic, HondaAccord, HR-V, CROSSTOUR, HONDACRV, ACCORD V Coupe (CD), CR-V I (RD), HondaPilot, CIVIC X Saloon (FC_), Suit, CRV, ODYSSEY, Metropolis Saloon (GM4, GM5, GM6, GM9), China Miniature ABEC7 Total Ceramic Ball Bearing 3x10x4mm ACCORD Coupe (CM), CR-V II (RD_), ACCORD X Saloon (CV), Accord, CIVIC IX Tourer (FK), Pilot, BR-V, ACCORD VI Coupe (CG)
OE NO.: 44305-S3N-951, 44306-T2L-H50, 44306-SEN-H11, 44305-T2L-H01, 44305-TF6-N01, 44305-S4K-A50, 44305-SWA-A51, 44306-SFJ-W00, 44305-S9A-N00, 44306-S9A-N00, 44306-TBC-A51, 44305-TBC-A51, 44305-S10-C61
Car Fitment: HONDA
Dimension: Normal
Substance: Metal, Steel
Model Variety: None
Guarantee: 12 Months
Auto Make: for honda civic town suit jazz accord, for honda Cr-v Fit Odyssey Vezel Accord 2571
Solution Title: Auto Travel Shaft for Honda Civic Town Crv
OEM: Recognized
Brand: MeiLeng
Sample: Obtainable
Status: In inventory
Quality: a hundred% Examined
Packing: Client Need/Neutral Bundle/Model Packing
Gain: Fast Supply,Easy,Prolonged Working Existence
Packaging Information: A.authentic packing box B.neutral packing boxC.creating the packing in accordance to customer’s requirementAuto Transmission Auto Rear Front Cv Axle Shaft Generate Shaft for Honda Civic Metropolis Crv Cr-v In shape Odyssey Vezel Accord Crosstour 2571
Port: HangZhou
Merchandise Description
Item Name | Auto Transmission Auto Rear Entrance Cv Axle Shaft Travel Shaft for Honda Civic City Crv Cr-v Fit Odyssey Vezel Accord Crosstour 2571 |
Car Design | for Honda Civic City Crv Cr-v Suit Odyssey Vezel Accord 2571 |
Sample | Accept |
MOQ | 10 |
Price | Tiered Pricing |
Service | Oem&Odm |
Delivery time | Generally in 3-thirty days, relying on the availability of stock |
Advantage | 1. Oem Odm Service,Custom Emblem or personal manufacturer 2. In excess of 25000+ Sku Stock,Fast Supply 3. Perfect soon after-product sales provider |
The Different Types of Axles
An axle is the central shaft of a gear or wheel. Axles are either fixed to the wheels or fixed to the vehicle. In some cases, they rotate together with the wheels and vehicle. The axle may also include bearings and mounting points. There are many types of axles, and it is important to understand the difference between each type.
Transaxle
The transaxle is the single mechanical device that combines the functions of a car’s differential, axle and transmission. It’s produced in manual and automatic models. A manual version is the preferred one for everyday driving, while an automatic one is more efficient in preventing vehicle damage. Here are some basics about the transaxle.
Transaxles are essential components of a car’s drivetrain, and any problems can cause major damage and leave the driver stranded. Transaxles include the transmission and the differential, which transfer the engine’s power to the wheels. Taking the time to check the transaxle is important to ensure that everything is functioning properly.
The transaxle is a very complex machine that combines the functions of the final drive and the transmission into one compact unit. The transaxle is a very versatile piece of automotive technology, and is an essential component of a front-wheel-drive car. In addition to conventional front-wheel-drive vehicles, many modern rear-wheel-drive vehicles use a transaxle to provide more even weight distribution.
The first American car to use a transaxle was the Cord 810 in the early 1920s. It was well ahead of its time, but was unsuccessful. For many years, the front-wheel drive automobile was absent from the United States automotive scene. It wasn’t until the 1960s that a front-wheel drive automobile re-emerged. A front-wheel-drive automobile, known as a transaxle, was the first to reach the market, and it’s not the only car to use this gearing.
A transaxle is a good option for vehicles with an extreme amount of torque. This system can handle powerful engine designs while keeping weight in the engine bay. It is not a perfect solution for all vehicles, however. In some vehicles, the extra weight added to the engine bay will affect the performance. The added weight will reduce traction. In addition, a transaxle mounts behind the engine, which adds weight to the rear.
Transaxles are the primary part of vehicles that have front-wheel drive. Their purpose is to transmit power from the engine to the drive wheels. The front-wheel-drive assembly had 2 short axles with complicated ball joints.
Full-floating axle
A full-floating axle is different from a semi-floating axle in several ways. A semi-floating axle is used for rear wheel drive cars, where it has a bearing mounted in the axle shaft. This axle supports the vehicle’s weight and transmits the drive torque from the transmission to the wheels. However, a semi-floating axle’s load capacity is limited by the size of the axle bearing. A full-floating axle, on the other hand, has the bearing mounted on the outside of the axle tube. The bearing is the only part of the axle that supports the vehicle, and the hub and bearing assembly are held together by a large nut.
The drive axle on a full-floating axle is splined at both ends so that it can easily be removed from the rear of a vehicle without removing the wheel. This type of axle makes it possible to change gears quickly and easily. Because of this, it’s not necessary to remove the wheels and tires in order to replace the axle. Instead, a common tool used to remove the axle from the wheel hub is an axle wrench.
Full-floating axles are more common in heavy-duty vehicles. The ability to carry heavy loads without causing the axle to break is a big advantage to full-floating axles. These axles require less maintenance and require less bends than traditional axles and may even be worth the extra investment if you have a heavy load to carry.
A full-floating axle allows the driver to change a broken axle shaft without having to remove the entire wheel. A full-floating axle will also allow the driver to remove the axle shaft without having to take off the wheel. Full-floating axles are also more durable than semi-floaters, which have weight resting on the axle tubes and housing.
While a full-floating axle is more expensive to manufacture, it is better for heavier vehicles that carry heavy loads. It is better to choose a full-floating axle if you have a heavy load or plan on towing.
Three-quarter floater
A three-quarter floating axle is a type of floating axle that’s a compromise between the full and semi-floating types. Its bearings are located on the axle casing rather than on the hub, which means that it’s less susceptible to axle breakdown. However, it’s not as robust as a full floating axle.
This design combines the benefits of fully-floating axles with the simplicity of a semi-floating axle. Instead of having multiple wheel bearings, a single wheel bearing is installed in the center of the hub. The hub is then keyed rigidly to the axle shaft, providing a connecting connection and maintaining wheel alignment.
While a full-floating axle is the most common style of truck axle, you may see the three-quarter floater on the side of a pickup. It was common for 3/4-ton Gms to use these axles until the 1980s. Dodge and Ford also used a semi-float axle called a Dana 60. The difference between the two types of axles is the amount of support provided by the axleshaft and hub, and the number of lug nuts on the axleshaft and hub are different.
The three-quarter floater axle drive assembly of the present invention is illustrated in FIG. 1. The axle housing comprises an elongated axle tube 12, a hub member 30, and a hub shaft 16. A hub member 30 is rotatably supported on the axle tube 12 by an anti-friction bearing assembly 42. The axle shaft is retained in place by a domed plate 26.
This axle design has two main advantages. First, it transfers the weight of the vehicle to the axle casing. It also helps transfer the driving torque and side thrust to the wheel. This type of axle also has a differential cross shaft, which limits inward axial movement of the axle shaft.
Dead axle
A Dead axle is a structural component that supports the rear wheel of a vehicle. It can either be straight or angled and is located behind the drive axle. Depending on the vehicle, the dead axle may be steerable. Tag axles are also common on agricultural equipment and certain heavy construction machinery. They are also known as lazy axles because they only contact the ground when a vehicle is carrying a significant load, thus saving tire wear. Dead axles may be rigid or flexible.
Some rear dead axles can also be configured as an air tank. The air is taken in and out of the rear dead axle through the port portions of the rear axle. This can reduce the size of the air tank. For this reason, it is a preferred design for rear dead axles. While most vehicles are equipped with two axles, the rear axle can be used to accommodate cargo.
FIG. 1 is a schematic plan view of a vehicle with two rear axles. The front axle is called the drive axle and the rear dead axle is called the dead axle. These components are located on a truck body frame. There are also battery and fuel tanks. They are used to distribute driving force from the front to rear wheels.
An axle is a crucial component of a vehicle. It transfers power from the engine to the wheels. A live axle is connected to the drive shaft and transmission, while a dead axle receives no direct power. This is the main difference between a live and dead axle. Although a dead axle is not as useful as a live one, it is still essential to understand what drives a car.
Dead axles are used in many vehicles for different purposes. Many large trucks are fitted with several of them for load bearing purposes. They also help distribute weight.
editor by czh 2023-03-04
China Truck Spare Parts OEM: 42311-0K070 Used for Toyota Truck Superior Quality Rear Axle Drive Shaft car axle
Product Description
Solution Description
This Shaft, Rear Axle, Rh Toyota, 42311-0K070 matches the types, which are indicated under.
Compatibility versions: HILUX/4RUNNER TRUCK
Human body/chassis
KUN10 KUN15 LAN15 TGN10 TGN15 TGN16
Simply because there are also a lot of versions, the desk can’t show them all. Please consult online consumer support.Thank you
NO. |
Oem |
Modle | Size/mm | Splines | Holes |
1 | 42311-263-01 | patriot Jeep | 874 | ten | 10+two |
26 | 42311-36210 | COASTER | 770/776 | 34 | 6+2+2 |
27 | 42311-37140 | Hino 300 | 865 | 37 | 10 |
Organization Profile
FAQ
Q:Can you do OEM and give samples firstly?
A:Of course,OEM and ODM are welcomed ,and with shares ,samples can be shipped with 3 HangZhou as you need.
Q:What is the MOQ?payment term? and shipping and delivery time
A:For standard merchandise, MOQ: 100PCS every product
Once we get payment, we will ship your order inside 20 operating days.
The typical supply time is 20days, dependent on which country you are in.
Q:In which are you? Can we visit your factory?
A:Our manufacturing facility is found in HangZhou, ZheJiang , China.
lt is shut to HangZhou Airport, and the targeted traffic at the west exit of HangZhou Sanquan Expressway is quite hassle-free.
All workers of the firm sincerely welcome domestic and foreign merchants to check out our firm for guidance and enterprise negotiation.
US $10-999 / Piece | |
100 Pieces (Min. Order) |
###
After-sales Service: | 1year |
---|---|
Condition: | New |
Axle Number: | 1 |
Application: | Truck |
Certification: | ISO |
Material: | 40cr Carbon Steel |
###
Samples: |
US$ 50/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
NO. |
Oem |
Modle | Length/mm | Splines | Holes |
1 | 42311-26300 | TOYOTA HAICE KDH211 RH | 825 |
30 |
6+1 |
2 | 42311-26290 | TOYOTA HAICE KDH20# RH | 733 | 30 | 6+1 |
3 | 42311-26301 | TOYOTA HAICE 2005 Narrow 1695 DIESEL | 825 | 30 | 6+1 |
4 | 42311-0K040 | TOYOTA HILUX 7 Vigo 2005-2015 KUN26 | 764 | 30 | 6+1 |
5 | 42311-0K030 | TOYOTA HILUX KUN25 RH | 764 | 30 | 6+1 |
6 | 42311-0K070 | TOYOTA HILUX KUN16 RH/HILUX DLX 5LE 2005-2013 | 764 | 30 | 5+1 |
7 | 42311-0K090 | TOYOTA HILUX KUN26 LHD RH | 764 | 30 | 6+1 |
8 | 42311-35330 | TOYOTA HILUX/4RUNNER TRUCK | 663 | 30 | 6+1 |
9 | 42311-35140 | TOYOTA HILUX 4 1983-1988/HILUX 5 1988-1997 | 663 | 30 | 6+1 |
10 | 42311-KK040 | 770 | 32 | 6+2 | |
11 | 42311-60240 | TOYOTA Landcruiser | 783 | 30 | 6+2 |
12 | 42311-60242 | TOYOTA Landcruiser | 783 | 30 | 6+2 |
13 | 42312-60070 | TOYOTA Landcruiser | 824 | 30 | 6+1 |
14 | 3W1Z-4234-A | Ford | 860 | 28 | 5 |
15 | 6W1Z-4234-A | Ford | 860 | 31 | 5 |
16 | F8AZ-4234-A | Ford | 809 | 28 | 5 |
17 | 42311-14990 | 990 | 39 | 10 | |
18 |
MB308901 | MITSUBISHI | 770 | 18 | 8+2 |
19 | MB308903 | MITSUBISHI | 800 | 18 | 8+2 |
20 | MC881679 | MITSUBISHI | 950 | 20 | 8 |
21 | MK499638/MC864169 | MITSUBISHI/Canter lntercooler FE74/75,Colt Diesel FE349/120PS | 802/805 | 18 | 8+2 |
22 | MK499638-M/MC864169-M | MITSUBISHI/Canter lntercooler FE74/75,Colt Diesel FE349/120PS | 805 | 18 | 8+2 |
23 | ME508085 | Canter lntercooler FE75 SHDX/H-Gear | 805 | 18 | 8+2 |
24 | 42311-0W030 /42311-LAA30 | TOYOTA | 774.5 | 37 | 8+2+2 |
25 | 3162-2403070-01 | patriot Jeep | 874 | 10 | 10+2 |
26 | 42311-36210 | COASTER | 770/776 | 34 | 6+2+2 |
27 | 42311-37140 | Hino 300 | 865 | 37 | 10 |
US $10-999 / Piece | |
100 Pieces (Min. Order) |
###
After-sales Service: | 1year |
---|---|
Condition: | New |
Axle Number: | 1 |
Application: | Truck |
Certification: | ISO |
Material: | 40cr Carbon Steel |
###
Samples: |
US$ 50/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
NO. |
Oem |
Modle | Length/mm | Splines | Holes |
1 | 42311-26300 | TOYOTA HAICE KDH211 RH | 825 |
30 |
6+1 |
2 | 42311-26290 | TOYOTA HAICE KDH20# RH | 733 | 30 | 6+1 |
3 | 42311-26301 | TOYOTA HAICE 2005 Narrow 1695 DIESEL | 825 | 30 | 6+1 |
4 | 42311-0K040 | TOYOTA HILUX 7 Vigo 2005-2015 KUN26 | 764 | 30 | 6+1 |
5 | 42311-0K030 | TOYOTA HILUX KUN25 RH | 764 | 30 | 6+1 |
6 | 42311-0K070 | TOYOTA HILUX KUN16 RH/HILUX DLX 5LE 2005-2013 | 764 | 30 | 5+1 |
7 | 42311-0K090 | TOYOTA HILUX KUN26 LHD RH | 764 | 30 | 6+1 |
8 | 42311-35330 | TOYOTA HILUX/4RUNNER TRUCK | 663 | 30 | 6+1 |
9 | 42311-35140 | TOYOTA HILUX 4 1983-1988/HILUX 5 1988-1997 | 663 | 30 | 6+1 |
10 | 42311-KK040 | 770 | 32 | 6+2 | |
11 | 42311-60240 | TOYOTA Landcruiser | 783 | 30 | 6+2 |
12 | 42311-60242 | TOYOTA Landcruiser | 783 | 30 | 6+2 |
13 | 42312-60070 | TOYOTA Landcruiser | 824 | 30 | 6+1 |
14 | 3W1Z-4234-A | Ford | 860 | 28 | 5 |
15 | 6W1Z-4234-A | Ford | 860 | 31 | 5 |
16 | F8AZ-4234-A | Ford | 809 | 28 | 5 |
17 | 42311-14990 | 990 | 39 | 10 | |
18 |
MB308901 | MITSUBISHI | 770 | 18 | 8+2 |
19 | MB308903 | MITSUBISHI | 800 | 18 | 8+2 |
20 | MC881679 | MITSUBISHI | 950 | 20 | 8 |
21 | MK499638/MC864169 | MITSUBISHI/Canter lntercooler FE74/75,Colt Diesel FE349/120PS | 802/805 | 18 | 8+2 |
22 | MK499638-M/MC864169-M | MITSUBISHI/Canter lntercooler FE74/75,Colt Diesel FE349/120PS | 805 | 18 | 8+2 |
23 | ME508085 | Canter lntercooler FE75 SHDX/H-Gear | 805 | 18 | 8+2 |
24 | 42311-0W030 /42311-LAA30 | TOYOTA | 774.5 | 37 | 8+2+2 |
25 | 3162-2403070-01 | patriot Jeep | 874 | 10 | 10+2 |
26 | 42311-36210 | COASTER | 770/776 | 34 | 6+2+2 |
27 | 42311-37140 | Hino 300 | 865 | 37 | 10 |
An Axle is a Simple Machine For Amplifying Force
An axle is the central shaft that connects the drive wheels of a vehicle. It transmits power from the engine to the wheels and absorbs braking and acceleration forces. It may also contain bearings. Learn more about the important functions of the axle in your vehicle. Its simple design makes it an efficient machine for amplifying force.
An axle is a rod or shaft that connects to the drive wheels
An axle is a rod or shaft that is fixed to the drive wheels of a vehicle. It provides support and rotates with the wheels. Generally, a vehicle has two axles. However, larger vehicles can have more. The type of axle used will depend on how much torque and speed the wheels need to travel.
Drive axles are crucial to the operation of a car. They transfer power from the engine to the wheels, so they must be strong and durable. They also need to be able to support the weight of the vehicle and resist accelerated forces. The drive axle is usually connected to a driveshaft, which extends upward into the transmission and connects with the engine.
There are two main types of axles: front wheel drive (FWD) and rear wheel drive (RWD). The former type is common in passenger vehicles, while the latter type is more common for trucks and cars. The rear wheel drive (RWD) axle connects to the drive wheels, while the front-wheel drive (FWD) axle transfers power from the transaxle differential to the wheels.
Modern drive axles consist of short rods with a flexible rubber boot covering the CV joint. The rubber boot helps to prevent dirt and grease from getting into the CV joint. The increased complexity of the drive axle increases the risk that something goes wrong with it. However, this increases the car’s traction, ride quality, and handling.
A car’s axles are designed by engineers to be extremely strong. They must be able to withstand thousands of pounds of weight, while operating under high levels of friction. But no drive axle is invincible; they will break if the vehicle is overloaded or too heavy.
The rear axle is connected to the engine and rotates with the wheels. The front axle helps with steering and absorbs road shocks. Typically, this part is made of carbon steel and nickel steel.
It absorbs braking and acceleration forces
The Axle is an important part of a vehicle’s suspension. It is responsible for absorbing braking and acceleration forces. Axle roll centres are located on the transversal vertical plane, through the center of each wheel. This is the point at which lateral force applied to the sprung mass is transferred to the unsprung mass, a process known as transfer of momentum. This force coupling point is also known as the Neutral Roll Axis.
An axle’s role in a vehicle goes beyond absorbing braking and acceleration forces. It also serves as a weight transfer device, reducing the stress on the joints of a vehicle. Its design has evolved over time to meet a variety of requirements. It must be durable and able to absorb braking and acceleration forces, while providing the right amount of structural support.
A potential diagram can be used to benchmark tyre performance. The data entered can include suspension geometry and load distributions. The lateral force potential of a tyre is calculated for each individual tyre in an axle, and the values obtained for a constant steer angle are also included.
Optimal energy recovery is crucial for absorbing braking forces and meeting the total braking force required for a given deceleration. Figure 11 shows the braking forces for the front and rear axles over a certain range when j/g = m. The thick solid line ab represents this range.
In addition to braking and acceleration forces, an axle’s lateral force capacity is limited by lateral load transfer. If one axle fails to absorb lateral forces, it might break loose and skid before the other. This can lead to understeer and oversteer. This is why it is not a good idea to put unsprung weight on a vehicle’s axle.
It transmits power from the engine to the wheels
The axle is an integral part of a vehicle’s drive system. It transmits power from the engine to the wheels. Different types of axles have different roles in transmission of power from the engine to the wheels. The drive shaft is the main component of an axle, connecting the engine and the wheels.
A vehicle’s axle transmits power from the engine to the rear wheels. The power is transferred through the gears to move the car forward. The inner wheel of a bicycle pedal powers the back wheel, while the outer wheel moves at a different speed. Similarly, the power from the engine is transmitted to the wheels by a car’s crankshaft and driveshaft.
The type of axle you choose depends on the size of the vehicle and its purpose. Standard axles are suitable for most vehicles, while customized axles are best suited for high-performance vehicles. Customized axles give you more control over the wheel speed and torque. It’s important to know about the types and sizes of axles to choose the right one for your vehicle.
A differential is another vital component of the drivetrain. It allows the power from the engine to reach both wheels, which allows the vehicle to accelerate and decelerate. A differential also compensates for the difference in tyre speeds on curved roads. By using a differential, you can increase the speed of the wheels and improve your car’s handling.
The differential between the front and rear axles is called a bevel ring gear. Its input shaft is supported by a ball race mounted in the axle casing. The other part of the differential is called the input helical gear. The two sun gears are connected by cross-pins.
It is a simple machine for amplifying force
A simple machine is one that increases the output of force without altering the input force. For example, a lever increases force but does not create new energy. Therefore, it is necessary to balance the work input and output. It is important to keep in mind that friction can reduce energy.
Using a simple machine, you can perform various tasks. For example, you can use it to cut and pry apart objects. This type of machine involves a wheel and an axle, which have a smaller radius than the wedge. The force applied by the wheel pushes the two pieces apart.
Another simple machine that amplifies force is a gearbox. The earliest gearboxes were used to lift buckets or weights from wells. The large gear is attached to a smaller one by a hinge. The smaller gear increases the force of the larger one, allowing the small gear to lift much larger loads.
A wheel and axle is a simple machine that uses mechanical advantage to change force. A wheel is a circular disk, and an axle is a rod through the center. The mechanical advantage is a result of the combination of torque and angular momentum to work against the force of gravity. In addition, this machine is closely related to gears.
Simple machines are a great way to compare the magnitude of forces, as they use similar mechanisms. One of the oldest examples of a simple machine is a wheel and axle. A wheel is fixed to an axle, and the axle is fixed to a vertical surface. The force generated by the wheel will be proportional to the distance between the two spools.
Another simple machine that amplifies force is a lever. A lever uses a beam or a rigid rod that can pivot on its fulcrum. It is an effective tool for shifting heavy loads, and also for applying force. It also reduces the friction of a vehicle while preserving its momentum.
editor by czh 2022-12-20
China Truck Spare Parts OEM: 3W1z-4234-a Used for Ford Superior Quality Rear Axle Drive Shaft axle clamp tool
Item Description
Product Description
Due to the fact there are too many designs, the table can’t present them all. You should seek advice from on the web client services.Thank you
NO. |
Oem |
Modle | Duration/mm | Splines | Holes |
one | 42311-263-01 | patriot Jeep | 874 | 10 | 10+two |
26 | 42311-36210 | COASTER | 770/776 | 34 | six+2+2 |
27 | 42311-37140 | Hino three hundred | 865 | 37 | 10 |
Organization Profile
FAQ
Q:Can you do OEM and supply samples first of all?
A:Indeed,OEM and ODM are welcomed ,and with stocks ,samples can be transported with 3 HangZhou as you want.
Q:What is the MOQ?payment term? and delivery time
A:For typical items, MOQ: 100PCS every single model
Once we get payment, we will ship your purchase inside of 20 functioning days.
The standard shipping and delivery time is 20days, depending on which nation you are in.
Q:The place are you? Can we pay a visit to your factory?
A:Our manufacturing unit is positioned in HangZhou, ZheJiang , China.
lt is near to HangZhou Airport, and the visitors at the west exit of HangZhou Sanquan Expressway is quite handy.
All workers of the organization sincerely welcome domestic and overseas merchants to check out our company for guidance and enterprise negotiation.
US $10-999 / Piece | |
100 Pieces (Min. Order) |
###
After-sales Service: | 1year |
---|---|
Condition: | New |
Axle Number: | 1 |
Application: | Truck |
Certification: | ISO |
Material: | 40cr Carbon Steel |
###
Samples: |
US$ 50/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
NO. |
Oem |
Modle | Length/mm | Splines | Holes |
1 | 42311-26300 | TOYOTA HAICE KDH211 RH | 825 |
30 |
6+1 |
2 | 42311-26290 | TOYOTA HAICE KDH20# RH | 733 | 30 | 6+1 |
3 | 42311-26301 | TOYOTA HAICE 2005 Narrow 1695 DIESEL | 825 | 30 | 6+1 |
4 | 42311-0K040 | TOYOTA HILUX 7 Vigo 2005-2015 KUN26 | 764 | 30 | 6+1 |
5 | 42311-0K030 | TOYOTA HILUX KUN25 RH | 764 | 30 | 6+1 |
6 | 42311-0K070 | TOYOTA HILUX KUN16 RH/HILUX DLX 5LE 2005-2013 | 764 | 30 | 5+1 |
7 | 42311-0K090 | TOYOTA HILUX KUN26 LHD RH | 764 | 30 | 6+1 |
8 | 42311-35330 | TOYOTA HILUX/4RUNNER TRUCK | 663 | 30 | 6+1 |
9 | 42311-35140 | TOYOTA HILUX 4 1983-1988/HILUX 5 1988-1997 | 663 | 30 | 6+1 |
10 | 42311-KK040 | 770 | 32 | 6+2 | |
11 | 42311-60240 | TOYOTA Landcruiser | 783 | 30 | 6+2 |
12 | 42311-60242 | TOYOTA Landcruiser | 783 | 30 | 6+2 |
13 | 42312-60070 | TOYOTA Landcruiser | 824 | 30 | 6+1 |
14 | 3W1Z-4234-A | Ford | 860 | 28 | 5 |
15 | 6W1Z-4234-A | Ford | 860 | 31 | 5 |
16 | F8AZ-4234-A | Ford | 809 | 28 | 5 |
17 | 42311-14990 | 990 | 39 | 10 | |
18 |
MB308901 | MITSUBISHI | 770 | 18 | 8+2 |
19 | MB308903 | MITSUBISHI | 800 | 18 | 8+2 |
20 | MC881679 | MITSUBISHI | 950 | 20 | 8 |
21 | MK499638/MC864169 | MITSUBISHI/Canter lntercooler FE74/75,Colt Diesel FE349/120PS | 802/805 | 18 | 8+2 |
22 | MK499638-M/MC864169-M | MITSUBISHI/Canter lntercooler FE74/75,Colt Diesel FE349/120PS | 805 | 18 | 8+2 |
23 | ME508085 | Canter lntercooler FE75 SHDX/H-Gear | 805 | 18 | 8+2 |
24 | 42311-0W030 /42311-LAA30 | TOYOTA | 774.5 | 37 | 8+2+2 |
25 | 3162-2403070-01 | patriot Jeep | 874 | 10 | 10+2 |
26 | 42311-36210 | COASTER | 770/776 | 34 | 6+2+2 |
27 | 42311-37140 | Hino 300 | 865 | 37 | 10 |
US $10-999 / Piece | |
100 Pieces (Min. Order) |
###
After-sales Service: | 1year |
---|---|
Condition: | New |
Axle Number: | 1 |
Application: | Truck |
Certification: | ISO |
Material: | 40cr Carbon Steel |
###
Samples: |
US$ 50/Piece
1 Piece(Min.Order) |
---|
###
Customization: |
Available
|
---|
###
NO. |
Oem |
Modle | Length/mm | Splines | Holes |
1 | 42311-26300 | TOYOTA HAICE KDH211 RH | 825 |
30 |
6+1 |
2 | 42311-26290 | TOYOTA HAICE KDH20# RH | 733 | 30 | 6+1 |
3 | 42311-26301 | TOYOTA HAICE 2005 Narrow 1695 DIESEL | 825 | 30 | 6+1 |
4 | 42311-0K040 | TOYOTA HILUX 7 Vigo 2005-2015 KUN26 | 764 | 30 | 6+1 |
5 | 42311-0K030 | TOYOTA HILUX KUN25 RH | 764 | 30 | 6+1 |
6 | 42311-0K070 | TOYOTA HILUX KUN16 RH/HILUX DLX 5LE 2005-2013 | 764 | 30 | 5+1 |
7 | 42311-0K090 | TOYOTA HILUX KUN26 LHD RH | 764 | 30 | 6+1 |
8 | 42311-35330 | TOYOTA HILUX/4RUNNER TRUCK | 663 | 30 | 6+1 |
9 | 42311-35140 | TOYOTA HILUX 4 1983-1988/HILUX 5 1988-1997 | 663 | 30 | 6+1 |
10 | 42311-KK040 | 770 | 32 | 6+2 | |
11 | 42311-60240 | TOYOTA Landcruiser | 783 | 30 | 6+2 |
12 | 42311-60242 | TOYOTA Landcruiser | 783 | 30 | 6+2 |
13 | 42312-60070 | TOYOTA Landcruiser | 824 | 30 | 6+1 |
14 | 3W1Z-4234-A | Ford | 860 | 28 | 5 |
15 | 6W1Z-4234-A | Ford | 860 | 31 | 5 |
16 | F8AZ-4234-A | Ford | 809 | 28 | 5 |
17 | 42311-14990 | 990 | 39 | 10 | |
18 |
MB308901 | MITSUBISHI | 770 | 18 | 8+2 |
19 | MB308903 | MITSUBISHI | 800 | 18 | 8+2 |
20 | MC881679 | MITSUBISHI | 950 | 20 | 8 |
21 | MK499638/MC864169 | MITSUBISHI/Canter lntercooler FE74/75,Colt Diesel FE349/120PS | 802/805 | 18 | 8+2 |
22 | MK499638-M/MC864169-M | MITSUBISHI/Canter lntercooler FE74/75,Colt Diesel FE349/120PS | 805 | 18 | 8+2 |
23 | ME508085 | Canter lntercooler FE75 SHDX/H-Gear | 805 | 18 | 8+2 |
24 | 42311-0W030 /42311-LAA30 | TOYOTA | 774.5 | 37 | 8+2+2 |
25 | 3162-2403070-01 | patriot Jeep | 874 | 10 | 10+2 |
26 | 42311-36210 | COASTER | 770/776 | 34 | 6+2+2 |
27 | 42311-37140 | Hino 300 | 865 | 37 | 10 |
How to Identify an Axle
An axle is the central shaft that rotates a wheel or a gear. The axle may be fixed to a vehicle or to its wheels, and may include bearings for movement. The axle may also be connected to other parts of the vehicle, such as the suspension and steering systems. The axle may also include mounting points for bearings.
Identifying an axle
Identifying an axle is easy if you know what to look for. Identifying the axle is an important part of axle rebuilding. The first step in the process is to determine the make and model of the axle. This can be done by looking for the Bill of Materials number on the right or left tube.
When trying to identify an axle, it helps to know its dimensions, hub pattern, and number of bolts. The width of the axle can also help you determine its type. Wide axles are commonly used on light-duty pickup trucks, while narrow axles are typically found on sports cars. Once you’ve identified the type of axle, you can look for its bolt pattern. The diameter of the axle is another way to identify it.
Axle identification tags can also help you find an axle in a salvage yard. They are usually stamped with information that can help you determine the make, model, and gear ratio of a particular axle. It’s important to note that the tag’s information may change from one year to the next.
If you don’t know where to look for an axle tag, it’s probably a GM vehicle. GM vehicles are equipped with RPO codes, 3-character codes that designate various features of a vehicle. The stickers are usually located near the spare tire or in the glove box compartment. Simply scan the RPO code using your smartphone to obtain this information.
When changing an axle in a truck, it is imperative to identify the rear end first. Differential configurations and shapes can vary greatly, so you must be able to find the right one. Luckily, the process of identifying an axle is simple, and there are several ways to do it. The most common methods for identifying an axle are the axle tag number and the shape of the differential cover.
Inspection
Axle inspection is an important part of the manufacturing process and must be carried out many times during its working life. There are many ways of inspecting an axle, including visual inspection and ultrasonic testing. Axles come in hollow and solid styles. Their dimensions vary depending on the type of rail that they are attached to. London Underground trains use a type of axle known as a VLU axle.
Inspection of axle flanges should be done at least once a year. The inspection process can vary depending on the type of axle and the type of repair required. Using a magnetic particle inspection can detect cracks in the axle flanges. Another method is HFEC, which detects cracks in the attach bolt holes.
The air springs should also be checked for chafing or damage. The front and rear spring hangers should be free of cracks or excessive movement. The front bushing should also be checked for deterioration and wear. Fasteners should also be checked for looseness and torque. If the fasteners are loose or damaged, replace them immediately.
Repair
It is important to get regular inspections of your car’s axle to avoid costly repairs. Fortunately, most axle repairs are relatively straightforward. All it takes is a few simple tools and a safe way to prop up your car. However, if you don’t feel confident performing a repair on your own, consider hiring a mechanic for the job.
Axles are one of the most commonly damaged parts of a car, and repairing one can help you keep the car in good shape for years to come. In fact, it can even improve the performance of your tires. If your car is experiencing serious problems, you should seek professional assistance to ensure a safe repair.
If you suspect an axle problem, it’s important to get it checked as soon as possible. Bad axles can cause a bumpy ride, affect tire rotation, cause grease to leak from the wheels, and even lead to a wreck. Ultimately, you’ll want to avoid driving your car if you suspect a problem with its axle.
Your car’s axle may make a clicking noise as it moves. It could also cause vibrations that affect your passengers or even the steering wheel. The axle is an important part of the car because it supports the weight of the car and keeps the wheels in place. If the problem affects your car’s handling, it might be time for an axle replacement.
You can tell if an axle is damaged by excessive vibrations or unusual noises. This can be caused by a number of problems, including overloading the vehicle, bad potholes, or even bad carrier bearings. When you hear this noise, you should seek professional help immediately to ensure the safety of your vehicle and your passengers. A bad axle can cause other car problems as well, such as a faulty ball joint or suspension problems.
editor by czh 2022-12-17