Tag Archives: hydraulic manufacturer

China manufacturer China Made Customized 3 Axle Dump Truck Trailer Tipper Trailer with Hydraulic Jack 80t Tipping Truck Trailer axle shaft

Product Description

China made customized 3 axle dump  truck trailer tipper trailer with hydraulic jack 80t tipping truck trailer 

China made customized 3 axle dump  truck trailer tipper trailer with hydraulic jack 80t tipping truck trailer 

 

Overall Dimension(L*W*H)

7200 / 12400 / 13000*2500 *(fence height 1600 /1800)
Tare Weight 7.5t
Axle 13T/16P, 2 / 3 / 4 pcs: BPW or CZPT or Yonglitai or CZPT Brand
Leaf Spring  90*13-10, 6/8 sets, CZPT alxe Funiu alxe Taiyue axle etc.
Suspension system Mechanical Suspension / air suspension / single point suspension 
(Germany Type or America Type or Japan Type)
Main Beam Material: Q 345 Carbon Steel.
Beam height: 500 mm.
Upper plate: 14 mm,
Bottom Plate: 16 mm,
Middle: 6/8 mm
Side Beam 14# / 16# / 18# channel steel (Q235)
Cross member 8# / 10# / 12# channel steel (Q235)
Platform 3mm checker plate or flatbed
Side wall height 600mm/800mm/1000mm etc
Tire  12R22.5-18, 12units
Landing Gear Standard 28Ton, JOST or CZPT etc.
Brake system  WABCO available. 4 sets T30/30+2 sets T30 chamber; Two 40L tanks, ABS Optional
Electrical system 1. Voltage:24V, LED lights
2. Tail light, brake light & reflector, side lamp etc.
3. Receotacle:7 ways (7 wire harness)

 

All of the above products support customization !

Besides, we also offer trailer parts separately such as axles, rims, suspensions and so on.

ZheJiang HangZhou CZPT trailer manufacturing Co, Ltd. was established in June 2571. We have been in truck trailer feild for more than 20 years. Domi Vehicle is 1 of departments of CZPT which dedicated to foreign trade.
Main products: skeletal semi trailer, flat bed semi trailer, dump / tipper semi trailer, low bed semi trailer, side wall /fence semi trailer and so on.
Main business: kinds of trailers and spare parts, as well as technical support and customization.
Certifications: ISO9001:2000 & BV & SGS & CCC.

We have our own factory to produce and manufacture what you need.
We will meet your needs with high quality.

1. How about payment?
T/T 30% before products,70% before leaving factory.

2. How about delivery time?
15-25 days after receiving the deposit in general.

3. How long will our price be valid?
Price with long valid time — We only adjust our price based on 2 factors: the changes of the international currency exchange rates and the rising in price of labor and row material.

4.What are the quality warranty principles?
Our company will provide warranty service due to quality failure, defects, and damage caused by product design, manufacturing, materials, assembly, etc. 
The warranty principle of our company is mainly based on repairs, and if it is determined that it cannot be repaired, the corresponding damaged parts will be replaced.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 24 Hours
Warranty: 1 Year
Type: Semi-Trailer
Load Capacity: 50T
Certification: ECE, GCC, CE, ISO9001, DOT, CCC, ISO/TS16949
Wheel Base: 8000-9000mm
Samples:
US$ 6000/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle

Are there guidelines for choosing the right axle for towing heavy loads?

When it comes to towing heavy loads, selecting the appropriate axle is crucial for ensuring safe and efficient towing performance. While the specific guidelines may vary depending on the vehicle and towing requirements, there are general considerations to keep in mind when choosing the right axle. Here’s a detailed explanation of the guidelines for selecting the right axle for towing heavy loads:

Gross Axle Weight Rating (GAWR):

One of the primary factors to consider is the Gross Axle Weight Rating (GAWR) provided by the vehicle manufacturer. The GAWR specifies the maximum weight that an axle is designed to support safely. It is essential to ensure that the selected axle’s GAWR is sufficient to handle the anticipated weight of the loaded trailer and any additional cargo or passengers in the towing vehicle. Exceeding the GAWR can lead to axle failure, compromised handling, and safety risks.

Towing Capacity:

Check the towing capacity of your vehicle, which represents the maximum weight that the vehicle is rated to tow. The axle’s capacity should align with the towing capacity to ensure safe and efficient towing. Consider the type and size of the trailer you intend to tow, including its loaded weight, tongue weight, and any weight distribution considerations. The axle should be capable of handling the anticipated load without exceeding its capacity.

Matching Axle and Suspension:

The axle and suspension system work together to support the weight of the vehicle and the trailer being towed. It is important to ensure that the axle and suspension are properly matched to provide adequate support and stability. Consider the type of suspension (leaf springs, coil springs, air suspension) and the axle’s design (solid axle, independent suspension) to ensure compatibility and optimal towing performance.

Braking System:

When towing heavy loads, the braking system plays a critical role in maintaining control and safety. Ensure that the axle is equipped with appropriate brakes that can handle the increased load. Consider the type of brakes, such as electric brakes or hydraulic brakes, and their capacity to provide sufficient stopping power for the combined weight of the towing vehicle and trailer.

Weight Distribution:

Proper weight distribution is essential for safe towing. The axle should be selected based on the anticipated weight distribution between the towing vehicle and the trailer. Consider factors like tongue weight and the use of weight distribution hitches or sway control devices to ensure balanced weight distribution and optimal handling characteristics.

Consult Manufacturer Recommendations:

Always refer to the vehicle manufacturer’s recommendations, specifications, and guidelines when selecting an axle for towing heavy loads. The manufacturer’s guidelines will provide accurate and vehicle-specific information to help you make the right choice. Consult the owner’s manual or contact the manufacturer directly for any specific towing-related recommendations.

It’s important to note that towing requirements and axle specifications can vary depending on the vehicle make and model, as well as regional regulations. It is advisable to consult with automotive experts, such as mechanics or dealerships, who have expertise in towing and can provide specific recommendations based on your vehicle and towing needs.

axle

How do axle ratios impact the performance and fuel efficiency of a vehicle?

The axle ratio of a vehicle plays a crucial role in determining its performance characteristics and fuel efficiency. Here’s a detailed explanation of how axle ratios impact these aspects:

Performance:

The axle ratio refers to the ratio of the number of rotations the driveshaft makes to the number of rotations the axle makes. A lower axle ratio, such as 3.23:1, means the driveshaft rotates 3.23 times for every rotation of the axle, while a higher ratio, like 4.10:1, indicates more driveshaft rotations per axle rotation.

A lower axle ratio, also known as a numerically higher ratio, provides better low-end torque and acceleration. This is because the engine’s power is multiplied as it goes through the gears, resulting in quicker acceleration from a standstill or at lower speeds. Vehicles with lower axle ratios are commonly found in trucks and performance-oriented vehicles where quick acceleration and towing capacity are desired.

On the other hand, a higher axle ratio, or numerically lower ratio, sacrifices some of the low-end torque for higher top-end speed and fuel efficiency. Vehicles with higher axle ratios are typically used in highway driving scenarios where maintaining higher speeds and maximizing fuel efficiency are prioritized.

Fuel Efficiency:

The axle ratio directly affects the engine’s RPM (revolutions per minute) at a given vehicle speed. A lower axle ratio keeps the engine running at higher RPMs, which may result in increased fuel consumption. However, this ratio can provide better towing capabilities and improved off-the-line acceleration.

In contrast, a higher axle ratio allows the engine to operate at lower RPMs during cruising speeds. This can lead to improved fuel efficiency because the engine doesn’t have to work as hard to maintain the desired speed. It’s worth noting that other factors, such as engine efficiency, aerodynamics, and vehicle weight, also influence fuel efficiency.

Manufacturers carefully select the axle ratio based on the vehicle’s intended purpose and desired performance characteristics. Some vehicles may offer multiple axle ratio options to cater to different driving preferences and requirements.

It’s important to consider that changing the axle ratio can have implications on the overall drivetrain system. Modifying the axle ratio can affect the vehicle’s speedometer accuracy, transmission shifting points, and may require recalibration of the engine control unit (ECU) to maintain optimal performance.

As always, for precise information on a specific vehicle’s axle ratio and its impact on performance and fuel efficiency, it is best to consult the vehicle manufacturer’s specifications or consult with automotive experts.

axle

What are the factors to consider when choosing an axle for a custom-built vehicle?

Choosing the right axle for a custom-built vehicle is crucial for ensuring optimal performance, durability, and safety. Here are several key factors to consider when selecting an axle for a custom-built vehicle:

  1. Vehicle Type and Intended Use:
  2. Consider the type of vehicle you are building and its intended use. Factors such as vehicle weight, power output, terrain (on-road or off-road), towing capacity, and payload requirements will influence the axle selection. Off-road vehicles may require axles with higher strength and durability, while performance-oriented vehicles may benefit from axles that can handle increased power and torque.

  3. Axle Type:
  4. Choose the appropriate axle type based on your vehicle’s drivetrain configuration. Common axle types include solid axles (live axles) and independent axles. Solid axles are often used in heavy-duty applications and off-road vehicles due to their robustness and ability to handle high loads. Independent axles offer improved ride quality and handling characteristics but may have lower load-carrying capacities.

  5. Weight Capacity:
  6. Determine the required weight capacity of the axle based on the vehicle’s weight and intended payload. It’s crucial to select an axle that can handle the anticipated loads without exceeding its weight rating. Consider factors such as cargo, passengers, and accessories that may contribute to the overall weight.

  7. Axle Ratio:
  8. Choose an axle ratio that matches your vehicle’s powertrain and desired performance characteristics. The axle ratio affects the torque multiplication between the engine and wheels, influencing acceleration, towing capability, and fuel efficiency. Higher axle ratios provide more torque multiplication for improved low-end power but may sacrifice top-end speed.

  9. Braking System Compatibility:
  10. Ensure that the chosen axle is compatible with your vehicle’s braking system. Consider factors such as the axle’s mounting provisions for brake calipers, rotor size compatibility, and the need for an anti-lock braking system (ABS) if required.

  11. Suspension Compatibility:
  12. Consider the compatibility of the chosen axle with your vehicle’s suspension system. Factors such as axle mounting points, suspension geometry, and overall ride height should be taken into account. Ensure that the axle can be properly integrated with your chosen suspension components and that it provides sufficient ground clearance for your specific application.

  13. Aftermarket Support:
  14. Consider the availability of aftermarket support for the chosen axle. This includes access to replacement parts, upgrade options, and technical expertise. A robust aftermarket support network can be beneficial for future maintenance, repairs, and customization needs.

  15. Budget:
  16. Set a realistic budget for the axle selection, keeping in mind that high-performance or specialized axles may come at a higher cost. Balance your requirements with your budget to find the best axle option that meets your needs without exceeding your financial limitations.

When choosing an axle for a custom-built vehicle, it’s recommended to consult with knowledgeable professionals, experienced builders, or reputable axle manufacturers. They can provide valuable guidance, assist in understanding technical specifications, and help you select the most suitable axle for your specific custom vehicle project.

China manufacturer China Made Customized 3 Axle Dump Truck Trailer Tipper Trailer with Hydraulic Jack 80t Tipping Truck Trailer   axle shaftChina manufacturer China Made Customized 3 Axle Dump Truck Trailer Tipper Trailer with Hydraulic Jack 80t Tipping Truck Trailer   axle shaft
editor by CX 2024-01-03

China Custom Trailer Parts 12 Inch Brake Drum Trailer Axle Parts Hub Drum and Hydraulic Brake Hub Electric Drum Brakes near me manufacturer

Product Description

Product Description

  • One piece unit includes hub drum,studs,bearing races(press in).
  • Bearings,cap,seal,lug nuts,spindles,spindle washers,spindle nuts also available.
  • Bolt hole,PCD and LOGO could be customised.
  • Single-piece assembly makes installation a snap, whether you’re retrofitting or switching from drum brakes.
  • Machined process minimizes runout and warping.
  • Contaminants can’t get in between rotor and hub.
  • Balanced unit provides smooth ride.
  • Vented design effectively dissipates heat, preventing heat-related damage.
  • 1/2″ ,7/16″wheel studs and industry-standard races are included.
  • HT250/G3000 cast iron construction ensures a favorable friction coefficient for necessary stopping power.

Product Parameters

Dia. Model No. PCD Bearings Outer Bearing Outside Cup Outer  Bearings Inner Bearing Outside Cup Inner Loading Capacity Brake Size
7″ HD-54522 5×4.5″(5×114.3) L44649 L44610 L44649 L44610 2000lbs 7″x1.25″
9″ HD9X1.75 5×4.5″(5×114.3) LM11949 LM11910 LM67048 LM67571 3000lbs 9″x1.75″
10″ HD2-5425 5×4.25″(5×107.9) L44649 L44610 L68149 L68111 3500lbs 10″x2.25″
10″ HD2-545 5×4.5″(5×114.3) L44649 L44610 L68149 L68111 3500lbs 10″x2.25″
10″ HD3-545 5×4.5″(5×114.3) L44649 L44610 L68149 L68111 3500lbs 10″x2.25″
10″ HD2-5475 5×4.75″(5×120.6) L44649 L44610 L68149 L68111 3500lbs 10″x2.25″
10″ HD2-550 5×5″(5×127) L44649 L44610 L68149 L68111 3500lbs 10″x2.25″
10″ HD2-555 5×5.5″(5×139.7) L44649 L44610 L68149 L68111 3500lbs 10″x2.25″
10″ HD-65535 6×5.5″(6×139.7) L44649 L44610 L68149 L68111 3500lbs 10″x2.25″
12″ HD-240 5X257.05 spoke UTG LM67048 LM67571 L68149 L68111 4000lbs 12″x2″
12″ HD-220 5×255.6 spoke UTG LM67048 LM67571 L68149 L68111 4000lbs 12″x2″
12″ HD-174 5X257 spoke UTG 15123 15245 25580 25520 6000lbs 12″x2″
12″ HD2-655 6×5.5″(6×139.7) 15123 15245 25580 25520 5200lbs 12″x2″
12″ HD9-136 6×5.5″(6×139.7) 15123 15245 25580 25520 5200lbs 12″x2″
12″ HD2-865 8×6.5″(8×165.1) 14125A 14276 25580 25520 7000 lbs 12″x2″
12″ HD9-138 8×6.5″(8×165.1) 14125A 14276 25580 25520 7000 lbs 12″x2″
12.25″ HD-86580 8×6.5″(8×165.1) 57175 57120 25580 25520 8000lbs 12.25″x3.375″
12.25″ HD-86510 8×6.5″(8×165.1) 25580 25520 387A 382A 10000lbs 12.25″x3.375″
12.25″ HD-86512 8×6.5″(8×165.1) 28682 28622 3984 3920 12000lbs 12.25:x5″
12.25″ HD-044 8×6.5″(8×165.1) 25580 25520 387A 382A 12000lbs 12.25″x4″
                 
9″  HT 5×4.25″ 5×4.25″(5×107.95) LM12749 LM12710 L68149 L68110 3000lbs 9″x1.75″
9″   FORD 5×4.5″ 5×4.5″(5×114.3) LM12749 LM12710 L68149 L68110 3000lbs 9″x1.75″
9″   HQ 5×4.75″ 5×4.75″(5×120.65) LM12749 LM12710 L68149 L68110 3000lbs 9″x1.75″
9″  LANDCRUISER 6×5.5″ 6×5.5″(6×139.7) LM12749 LM12710 L68149 L68110 3000lbs 9″x1.75″
10″ HT 5×4.25″ 5×4.25″(5×107.95) LM12749 LM12710 L68149 L68110 3500lbs 10″x2.25″
10″  FORD 5×4.5″ 5×4.5″(5 x114.3) LM12749 LM12710 L68149 L68110 3500lbs 10″x2.25″
10″  HQ 5×4.75″ 5×4.75″(5×120.65) LM12749 LM12710 L68149 L68110 3500lbs 10″x2.25″
10″ LANDCRUISER 6×5.5″ 6×5.5″(6×139.7) LM12749 LM12710 L68149 L68110 3500lbs 10″x2.25″

Packaging & Shipping

 

Our Advantages

 

Company Profile

HangZhou Tsingleader Industry Co., Ltd. is located in the beautiful HangZhou city. We specialize in the production of trailer parts, axle and transmission of engineering machinery and special engineering and agricultural machinery.
Over the past years, Tsingleader Industry has invested 4 manufacturing plants in China. Following the principle of “quality assurance, abiding by the contract, reciprocity, mutual benefit and first-class services”, we have won the trust from our clients both at home and abroad.
Our annual sales amount reaches USD 5 million and our products have been exported to North and South America, Europe ,Africa,South Asia and the Middle East.
We sincerely hope to become your earnest business partner and your contact will be warmly welcomed.

Worm Shafts and Gearboxes

If you have a gearbox, you may be wondering what the best Worm Shaft is for your application. There are several things to consider, including the Concave shape, Number of threads, and Lubrication. This article will explain each factor and help you choose the right Worm Shaft for your gearbox. There are many options available on the market, so don’t hesitate to shop around. If you are new to the world of gearboxes, read on to learn more about this popular type of gearbox.
worm shaft

Concave shape

The geometry of a worm gear varies considerably depending on its manufacturer and its intended use. Early worms had a basic profile that resembled a screw thread and could be chased on a lathe. Later, tools with a straight sided g-angle were developed to produce threads that were parallel to the worm’s axis. Grinding was also developed to improve the finish of worm threads and minimize distortions that occur with hardening.
To select a worm with the proper geometry, the diameter of the worm gear must be in the same unit as the worm’s shaft. Once the basic profile of the worm gear is determined, the worm gear teeth can be specified. The calculation also involves an angle for the worm shaft to prevent it from overheating. The angle of the worm shaft should be as close to the vertical axis as possible.
Double-enveloping worm gears, on the other hand, do not have a throat around the worm. They are helical gears with a straight worm shaft. Since the teeth of the worm are in contact with each other, they produce significant friction. Unlike double-enveloping worm gears, non-throated worm gears are more compact and can handle smaller loads. They are also easy to manufacture.
The worm gears of different manufacturers offer many advantages. For instance, worm gears are 1 of the most efficient ways to increase torque, while lower-quality materials like bronze are difficult to lubricate. Worm gears also have a low failure rate because they allow for considerable leeway in the design process. Despite the differences between the 2 standards, the overall performance of a worm gear system is the same.
The cone-shaped worm is another type. This is a technological scheme that combines a straight worm shaft with a concave arc. The concave arc is also a useful utility model. Worms with this shape have more than 3 contacts at the same time, which means they can reduce a large diameter without excessive wear. It is also a relatively low-cost model.
worm shaft

Thread pattern

A good worm gear requires a perfect thread pattern. There are a few key parameters that determine how good a thread pattern is. Firstly, the threading pattern must be ACME-threaded. If this is not possible, the thread must be made with straight sides. Then, the linear pitch of the “worm” must be the same as the circular pitch of the corresponding worm wheel. In simple terms, this means the pitch of the “worm” is the same as the circular pitch of the worm wheel. A quick-change gearbox is usually used with this type of worm gear. Alternatively, lead-screw change gears are used instead of a quick-change gear box. The pitch of a worm gear equals the helix angle of a screw.
A worm gear’s axial pitch must match the circular pitch of a gear with a higher axial pitch. The circular pitch is the distance between the points of teeth on the worm, while the axial pitch is the distance between the worm’s teeth. Another factor is the worm’s lead angle. The angle between the pitch cylinder and worm shaft is called its lead angle, and the higher the lead angle, the greater the efficiency of a gear.
Worm gear tooth geometry varies depending on the manufacturer and intended use. In early worms, threading resembled the thread on a screw, and was easily chased using a lathe. Later, grinding improved worm thread finishes and minimized distortions from hardening. As a result, today, most worm gears have a thread pattern corresponding to their size. When selecting a worm gear, make sure to check for the number of threads before purchasing it.
A worm gear’s threading is crucial in its operation. Worm teeth are typically cylindrical, and are arranged in a pattern similar to screw or nut threads. Worm teeth are often formed on an axis of perpendicular compared to their parallel counterparts. Because of this, they have greater torque than their spur gear counterparts. Moreover, the gearing has a low output speed and high torque.

Number of threads

Different types of worm gears use different numbers of threads on their planetary gears. A single threaded worm gear should not be used with a double-threaded worm. A single-threaded worm gear should be used with a single-threaded worm. Single-threaded worms are more effective for speed reduction than double-threaded ones.
The number of threads on a worm’s shaft is a ratio that compares the pitch diameter and number of teeth. In general, worms have 1,2,4 threads, but some have three, five, or six. Counting thread starts can help you determine the number of threads on a worm. A single-threaded worm has fewer threads than a multiple-threaded worm, but a multi-threaded worm will have more threads than a mono-threaded planetary gear.
To measure the number of threads on a worm shaft, a small fixture with 2 ground faces is used. The worm must be removed from its housing so that the finished thread area can be inspected. After identifying the number of threads, simple measurements of the worm’s outside diameter and thread depth are taken. Once the worm has been accounted for, a cast of the tooth space is made using epoxy material. The casting is moulded between the 2 tooth flanks. The V-block fixture rests against the outside diameter of the worm.
The circular pitch of a worm and its axial pitch must match the circular pitch of a larger gear. The axial pitch of a worm is the distance between the points of the teeth on a worm’s pitch diameter. The lead of a thread is the distance a thread travels in 1 revolution. The lead angle is the tangent to the helix of a thread on a cylinder.
The worm gear’s speed transmission ratio is based on the number of threads. A worm gear with a high ratio can be easily reduced in 1 step by using a set of worm gears. However, a multi-thread worm will have more than 2 threads. The worm gear is also more efficient than single-threaded gears. And a worm gear with a high ratio will allow the motor to be used in a variety of applications.
worm shaft

Lubrication

The lubrication of a worm gear is particularly challenging, due to its friction and high sliding contact force. Fortunately, there are several options for lubricants, such as compounded oils. Compounded oils are mineral-based lubricants formulated with 10 percent or more fatty acid, rust and oxidation inhibitors, and other additives. This combination results in improved lubricity, reduced friction, and lower sliding wear.
When choosing a lubricant for a worm shaft, make sure the product’s viscosity is right for the type of gearing used. A low viscosity will make the gearbox difficult to actuate and rotate. Worm gears also undergo a greater sliding motion than rolling motion, so grease must be able to migrate evenly throughout the gearbox. Repeated sliding motions will push the grease away from the contact zone.
Another consideration is the backlash of the gears. Worm gears have high gear ratios, sometimes 300:1. This is important for power applications, but is at the same time inefficient. Worm gears can generate heat during the sliding motion, so a high-quality lubricant is essential. This type of lubricant will reduce heat and ensure optimal performance. The following tips will help you choose the right lubricant for your worm gear.
In low-speed applications, a grease lubricant may be sufficient. In higher-speed applications, it’s best to apply a synthetic lubricant to prevent premature failure and tooth wear. In both cases, lubricant choice depends on the tangential and rotational speed. It is important to follow manufacturer’s guidelines regarding the choice of lubricant. But remember that lubricant choice is not an easy task.

China Custom Trailer Parts 12 Inch Brake Drum Trailer Axle Parts Hub Drum and Hydraulic Brake Hub Electric Drum Brakes   near me manufacturer China Custom Trailer Parts 12 Inch Brake Drum Trailer Axle Parts Hub Drum and Hydraulic Brake Hub Electric Drum Brakes   near me manufacturer